Affiner votre recherche
Résultats 1741-1750 de 2,503
Seasonal variation and spatial distribution of atmospheric mercury and its gas-particulate partition in the vicinity of a semiconductor manufacturing complex
2014
Jen, Yi-Hsiu | Chen, Wei-Hsiang | Yuan, Chung-Shin | Ie, Iau-Ren | Hung, Chung-Hsuang
This study investigated the tempospatial variation of atmospheric mercury and its gas-particulate partition in the vicinity of a semiconductor manufacturing complex, where a plenty of flat-monitor manufacturing plants using elemental mercury as a light-initiating medium to produce backlight fluorescence tubes and may fugitively emit mercury-containing air pollutants to the atmosphere. Atmospheric mercury speciation, concentration, and the partition of total gaseous mercury (TGM) and particulate mercury (Hgₚ) were measured at four sites surrounding the semiconductor manufacturing intensive district/complex. One-year field measurement showed that the seasonal averaged concentrations of TGM and Hgₚwere in the range of 3.30–6.89 and 0.06–0.14 ng/m³, respectively, whereas the highest 24-h TGM and Hgₚconcentrations were 10.33 and 0.26 ng/m³, respectively. Atmospheric mercury apportioned as 92.59–99.01 % TGM and 0.99–7.41 % Hgₚ. As a whole, the highest and lowest concentrations of TGM were observed in the winter and summer sampling periods, respectively, whereas the concentration of Hgₚdid not vary much seasonally. The highest TGM concentrations were always observed at the downwind sites, indicating that the semiconductor manufacturing complex was a hot spot of mercury emission source, which caused severe atmospheric mercury contamination over the investigation region.
Afficher plus [+] Moins [-]Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS
2014
Pesic, Dusica J. | Blagojevic, Milan DJ. | Zivkovic, Nenad V.
Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316–323, 2009), Xie et al. (J Hydrodyn 21(1): 108–117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975–3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394–406, 2009; J Hazard Mater 192(3): 940–948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street increases with the rise of the wind velocity at the roof level of the street canyon.
Afficher plus [+] Moins [-]Mercury accumulation and tissue-specific antioxidant efficiency in the wild European sea bass (Dicentrarchus labrax) with emphasis on seasonality
2014
Mieiro, C. L. | Dolbeth, M. | Marques, T. A. | Duarte, A. C. | Pereira, M. E. | Pacheco, M.
The main goal of this study was to assess both mercury (Hg) accumulation and organs’ specific oxidative stress responses of gills, liver and kidney of Dicentrarchus labrax with emphasis on seasonality. Fish were collected in cold and warm periods in three stations: reference, moderated and highly contaminated sites. Our results showed that seasonal factors slightly influenced Hg accumulation between year periods (cold and warm) and strongly affected organs’ response basal levels. In contrast, seasonality seemed not to influence oxidative stress responses, since similar response patterns were obtained for both year periods, and moderate degree of antioxidant responses was obtained. Moreover, the oxidative stress profile may be attributed to Hg contamination degree, which showed organ-specific response and accumulation patterns. Hence, gills showed to be able to adapt to Hg contamination, and in opposition, kidney and liver demonstrated some vulnerability to Hg toxicity. The critical Hg concentrations indicated specific threshold limits for each organ. Overall, seasonality should be taken into account in monitoring programmes, helping to characterize the individuals’ reference values of response and thus to discriminate between the effects induced by natural causes or by contamination.
Afficher plus [+] Moins [-]Distinct diversity of the czcA gene in two sedimentary horizons from a contaminated estuarine core
2014
Kaci, Assia | Petit, Fabienne | Lesueur, Patrick | Boust, Dominique | Vrel, Anne | Berthe, Thierry
In estuarine ecosystems, trace metals are mainly associated with fine grain sediments which settle on mudflats. Over time, the layers of sediments accumulate and are then transformed by diagenetic processes, recording the history of the estuary’s chemical contamination. In such a specific environment, we investigated to what extent a chronic exposure to contaminants could affect metal-resistant sedimentary bacteria in subsurface sediments. The occurrence and diversity of cadmium resistance genes (cadA, czcA) was investigated in 5- and 33-year-old sediments from a highly contaminated estuary (Seine France). Primers were designed to detect a 252-bp fragment of the czcA gene, specifically targeting a transmembrane helice domain (TMH IV) involved in the proton substrate antiport of this efflux pump. Although the cadA gene was not detected, the highest diversity of the sequence of the czcA gene was observed in the 5-year-old sediment. According to the percentage of identity at the amino acid level, the closest CzcA relatives were identified among Proteobacteria (α, β, γ, and δ), Verrucomicrobia, Nitrospirae, and Bacteroidetes. The most abundant sequences were affiliated with Stenotrophomonas. In contrast, in the 33-year-old sediment, CzcA sequences were mainly related to Rhodanobacter thiooxydans and Stenotrophomonas, suggesting a shaping of the metal-resistant microbial communities over time by both diagenetic processes and trace metal contamination.
Afficher plus [+] Moins [-]Specificity of metal tolerance and use of excluder metallophytes for the phytostabilization of metal polluted soils: the case of Silene paradoxa L
2014
Colzi, Ilaria | Rocchi, Sonia | Rangoni, Mattia | Del Bubba, Massimo | Gonnelli, Cristina
This work was planned for providing useful information about the use of excluder metallophytes for phytostabilization of soils contaminated also with elements scarcely represented in the metalliferous environment of origin. To this aim, we investigated tolerance and accumulation of several different elements in a metallicolous and a nonmetallicolous population of Silene paradoxa through a hydroponic experiment. S. paradoxa metallicolous population showed increased tolerance not only to all the metals highly represented in the environment of origin but also to some of those scarcely present. Therefore, our results deposed in favor of the occurrence of the co-tolerance phenomenon in S. paradoxa for some elements. Metal accumulation was higher in the roots than in the shoots and lower in the metallicolous population than in the nonmetallicolous one, thus showing tolerance mechanisms to be based largely on metal exclusion. Anyway, the relative contribution of avoidance and of internal tolerance to metal tolerance was shown to be element-dependent. Present data revealed that metallicolous plants can effectively posses metal co-tolerances, which deserve to be investigated; as such, plants can actually represent a precious and exploitable tool also for the phytostabilization of soils contaminated with elements underrepresented in the environment of their origin.
Afficher plus [+] Moins [-]Support vector machine―an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?
2014
Liu, Mei | Lu, Jun
Water quality forecasting in agricultural drainage river basins is difficult because of the complicated nonpoint source (NPS) pollution transport processes and river self-purification processes involved in highly nonlinear problems. Artificial neural network (ANN) and support vector model (SVM) were developed to predict total nitrogen (TN) and total phosphorus (TP) concentrations for any location of the river polluted by agricultural NPS pollution in eastern China. River flow, water temperature, flow travel time, rainfall, dissolved oxygen, and upstream TN or TP concentrations were selected as initial inputs of the two models. Monthly, bimonthly, and trimonthly datasets were selected to train the two models, respectively, and the same monthly dataset which had not been used for training was chosen to test the models in order to compare their generalization performance. Trial and error analysis and genetic algorisms (GA) were employed to optimize the parameters of ANN and SVM models, respectively. The results indicated that the proposed SVM models performed better generalization ability due to avoiding the occurrence of overtraining and optimizing fewer parameters based on structural risk minimization (SRM) principle. Furthermore, both TN and TP SVM models trained by trimonthly datasets achieved greater forecasting accuracy than corresponding ANN models. Thus, SVM models will be a powerful alternative method because it is an efficient and economic tool to accurately predict water quality with low risk. The sensitivity analyses of two models indicated that decreasing upstream input concentrations during the dry season and NPS emission along the reach during average or flood season should be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data and even trimonthly data are available, the SVM methodology developed here can easily be applied to other NPS-polluted rivers.
Afficher plus [+] Moins [-]Cytogenetic biomonitoring of primary school children exposed to air pollutants: micronuclei analysis of buccal epithelial cells
2014
Demircigil, Gonca Çakmak | Erdem, Onur | Gaga, Eftade O. | Altuğ, Hicran | Demirel, Gülçin | Özden, Özlem | Arı, Akif | Örnektekin, Sermin | Döğeroğlu, Tuncay | van Doorn, Wim | Burgaz, Sema
There is an increasing attempt in the world to determine the exposures of children to environmental chemicals. To analyze the genotoxic effect of air pollution, micronucleus (MN) assay was carried out in buccal epithelial cells (BECs) of children living in an urban city of Turkey. Children from two schools at urban-traffic and suburban sites were investigated in summer and winter seasons for the determination of BEC-MN frequency (per mille) and frequency of BEC with MN (per mille). The same children were also recruited for lung function measurements within a MATRA project (“Together Towards Clean Air in Eskisehir and Iskenderun”) Measured NO₂and SO₂concentrations did not exceed the European Union (EU) limit levels either in urban-traffic or suburban regions. Higher O₃concentrations were measured in the suburban site especially in the summer period. Particulate matter (PM₂.₅and PM₁₀) levels which did not differ statistically between two regions were above the EU limits in general. Although BEC-MN frequencies of children living in the suburban sites were higher in general, the difference between two regions was not significant either in the summer or winter periods. BEC-MN frequencies of the urban-traffic children were found to be significantly higher in summer period (mean ± SD, 2.68 ± 1.99) when compared to winter period (1.64 ± 1.59; p = 0.004). On the other hand, no seasonality was observed for the suburban children. Similar results have been obtained in the BEC frequency with MN in our study. In summer, BEC-MN frequencies were significantly increased with the decrease in pulmonary function levels based on forced expiratory flow between 25 and 75 % of vital capacity (FEF₂₅–₇₅ %) levels (p < 0.05). As a conclusion, children living in urban-traffic and suburban areas in the city of Eskişehir exhibited similar genotoxicity. Seasonal variation in genotoxicity may be interpreted as relatively high ozone levels and increasing time spent at outdoors in the summer.
Afficher plus [+] Moins [-]Association between air quality and quality of life
2014
Darçın, Murat
Air quality—or its converse, air pollution—is a significant risk factor for human health. Recent studies have reported association between air pollution and human health. There are numerous diseases that may be caused by air pollution such as respiratory infection, lung cancer, cardiovascular disease, chronic obstructive pulmonary disease, and asthma. In this study, the relationship between air quality and quality of life was examined by using canonical correlation analysis. Data of this study was collected from 27 countries. WHO statistics were used as the main source of quality of life data set (Y variables set). European Environment Agency statistics and (for outdoor air-PM10) WHO statistics were used as the main source of air quality data set (X variables set). It is found that there are significant positive correlation between air quality and quality of life.
Afficher plus [+] Moins [-]A step forward using QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) based extraction and gas chromatography-tandem mass spectrometry—levels of priority polycyclic aromatic hydrocarbons in wild and commercial mussels
2014
Madureira, Tânia Vieira | Velhote, Susana | Santos, Claudia | Cruzeiro, Catarina | Rocha, Eduardo | Rocha, Maria João
A new and fully validated QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction and gas chromatography–tandem mass spectrometry methodology was developed and subsequently implemented for the quantification of 16 polycyclic aromatic hydrocarbons (PAHs) in wild (from Matosinhos Beach, Portugal) and commercial (from Ria de Arousa, Spain) mussels. The method proved to be robust, precise, and accurate, with recoveries ranging from 89.2 to 111.8 %. Total sums of 16 PAHs were 52.91 and 37.58 ng/g of wet weight for wild and commercial specimens, respectively. The three- to four-ring PAHs were the most abundant, and a mixture of petrogenic and pyrolytic sources were suspected to occur in both origin areas. Although the contamination levels were below the European regulated limits, specifically for commercial mussels (this despite wild specimens are also consumed), care should be taken in terms of human health, since we are still not aware of the low-dose versus long-term effects, even more in high-risk population groups.
Afficher plus [+] Moins [-]Dynamics and mitigation of six pesticides in a “Wet” forest buffer zone
2014
Passeport, Elodie | Richard, Benjamin | Chaumont, Cédric | Margoum, Christelle | Liger, Lucie | Gril, Jean-Joël | Tournebize, Julien
Pesticide pollution is one of the main current threats on water quality. This paper presents the potential and functioning principles of a “Wet” forest buffer zone for reducing concentrations and loads of glyphosate, isoproturon, metazachlor, azoxystrobin, epoxiconazole, and cyproconazole. A tracer injection experiment was conducted in the field in a forest buffer zone at Bray (France). A fine time-scale sampling enabled to illustrate that interactions between pesticides and forest buffer substrates (soil and organic-rich litter layer), had a retarding effect on molecule transfer. Low concentrations were observed for all pesticides at the forest buffer outlet thus demonstrating the efficiency of “Wet” forest buffer zone for pesticide dissipation. Pesticide masses injected in the forest buffer inlet directly determined concentration peaks observed at the outlet. Rapid and partially reversible adsorption was likely the major process affecting pesticide transfer for short retention times (a few hours to a few days). Remobilization of metazachlor, isoproturon, desmethylisoproturon, and AMPA was observed when non-contaminated water flows passed through the forest buffer. Our data suggest that pesticide sorption properties alone could not explain the complex reaction mechanisms that affected pesticide transfer in the forest buffer. Nevertheless, the thick layer of organic matter litter on the top of the forest soil was a key parameter, which enhanced partially reversible sorption of pesticide, thus retarded their transfer, decreased concentration peaks, and likely increased degradation of the pesticides. Consequently, to limit pesticide pollution transported by surface water, the use of already existing forest areas as buffer zones should be equally considered as the most commonly implemented grass buffer strips.
Afficher plus [+] Moins [-]