Affiner votre recherche
Résultats 1741-1750 de 6,548
Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas Texte intégral
2020
Almeida, S.M. | Manousakas, M. | Diapouli, E. | Kertesz, Z. | Samek, L. | Hristova, E. | Šega, K. | Alvarez, R Padilla | Belis, C.A. | Eleftheriadis, K.
This work presents the results of a PM2.5 source apportionment study conducted in urban background sites from 16 European and Asian countries. For some Eastern Europe and Central Asia cities this was the first time that quantitative information on pollution source contributions to ambient particulate matter (PM) has been performed. More than 2200 filters were sampled and analyzed by X-Ray Fluorescence (XRF), Particle-Induced X-Ray Emission (PIXE), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to measure the concentrations of chemical elements in fine particles. Samples were also analyzed for the contents of black carbon, elemental carbon, organic carbon, and water-soluble ions. The Positive Matrix Factorization receptor model (EPA PMF 5.0) was used to characterize similarities and heterogeneities in PM2.5 sources and respective contributions in the cities that the number of collected samples exceeded 75. At the end source apportionment was performed in 11 out of the 16 participating cities. Nine major sources were identified to have contributed to PM2.5: biomass burning, secondary sulfates, traffic, fuel oil combustion, industry, coal combustion, soil, salt and “other sources”. From the averages of sources contributions, considering 11 cities 16% of PM2.5 was attributed to biomass burning, 15% to secondary sulfates, 13% to traffic, 12% to soil, 8.0% to fuel oil combustion, 5.5% to coal combustion, 1.9% to salt, 0.8% to industry emissions, 5.1% to “other sources” and 23% to unaccounted mass. Characteristic seasonal patterns were identified for each PM2.5 source. Biomass burning in all cities, coal combustion in Krakow/POL, and oil combustion in Belgrade/SRB and Banja Luka/BIH increased in Winter due to the impact of domestic heating, whereas in most cities secondary sulfates reached higher levels in Summer as a consequence of the enhanced photochemical activity. During high pollution days the largest sources of fine particles were biomass burning, traffic and secondary sulfates.
Afficher plus [+] Moins [-]Mechanistic insight to mycoremediation potential of a metal resistant fungal strain for removal of hazardous metals from multimetal pesticide matrix Texte intégral
2020
Dey, Priyadarshini | Malik, Anushree | Mishra, Abhishek | Singh, Dileep Kumar | von Bergen, Martin | Jehmlich, Nico
Fungi have an exceptional capability to flourish in presence of heavy metals and pesticide. However, the mechanism of bioremediation of pesticide (lindane) and multimetal [mixture of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn)] by a fungus is little understood. In the present study, Aspergillus fumigatus, a filamentous fungus was found to accumulate heavy metals in the order [Zn(98%)>Pb(95%)>Cd(63%)>Cr(62%)>Ni(46%)>Cu(37%)] from a cocktail of 30 mg L⁻¹ multimetal and lindane (30 mg L⁻¹) in a composite media amended with 1% glucose. Particularly, Pb and Zn uptake was enhanced in presence of lindane. Remarkably, lindane was degraded to 1.92 ± 0.01 mg L⁻¹ in 72 h which is below the permissible limit value (2.0 mg L⁻¹) for the discharge of lindane into the aquatic bodies as prescribed by European Community legislation. The utilization of lindane as a cometabolite from the complex environment was evident by the phenomenal growth of the fungal pellet biomass (5.89 ± 0.03 g L⁻¹) at 72 h with cube root growth constant of fungus (0.0211 g¹/³ L⁻¹/³ h⁻¹) compared to the biomasses obtained in case of the biotic control as well as in presence of multimetal complex without lindane. The different analytical techniques revealed the various stress coping strategies adopted by A. fumigatus for multimetal uptake in the simultaneous presence of multimetal and pesticide. From the Transmission electron microscope coupled energy dispersive X-ray analysis (TEM-EDAX) results, uptake of the metals Cd, Cu and Pb in the cytoplasmic membrane and the accumulation of the metals Cr, Ni and Zn in the cytoplasm of the fungus were deduced. Fourier-transform infrared spectroscopy (FTIR) revealed involvement of carboxyl/amide group of fungal cell wall in metal chelation. Thus A. fumigatus exhibited biosorption and bioaccumulation as the mechanisms involved in detoxification of multimetals.
Afficher plus [+] Moins [-]Distinct microbial communities and their networks in an anammox coupled with sulfur autotrophic/mixotrophic denitrification system Texte intégral
2020
Du, Shuai | Ya, Tao | Zhang, Minglu | Zhu, Minghan | Li, Nankun | Liu, Shuwei | Wang, Xiaohui
Organ carbon are often used to enhance denitrification in wastewater treatment. However, their possible effects on microbial interactions are very limited. In this work, an anaerobic ammonium oxidation (anammox) coupled with sulfur autotrophic/mixotrophic denitrification (SAD/SMD) system was used to investigate the changes in microbial interactions among the microbial communities under different nutrient condition. The removal efficiency of total nitrogen increased from 70% (SAD) to 97% (SMD). The Illumina sequencing analysis indicated that Planctomycetes was the most dominant bacterial phylum in anammox system. Thiobacillus and Sulfurimonas, two typical autotrophic denitrifiers, decreased significantly from 31.9% to 17.7%–12.2% and 9.3%, when the nutrient condition changed from SAD to SMD (P < 0.05). Meanwhile, some heterotrophic or mixotrophic denitrifying bacteria, including Gemmobacter, Pseudomonas and Thauera increased significantly (P < 0.05). Molecular ecological network (MEN) analysis showed that the addition of organic carbon substantially altered the overall architecture of the network. Compared with SAD, the SMD had shorter path lengths, indicating higher transfer efficiencies of information and materials among different microorganism. The addition of organic carbon increased the microbial interaction complexity of Proteobacteria. The links of Thiobacillus, which was a typical sulfur-oxidizing autotrophic denitrifying bacteria, significantly reduced (P < 0.05) with the addition of organic carbon, while the links of the heterotrophic bacteria Geobacter significantly increased (P < 0.05). This study provided new insights into our understanding of the shifts in the bacteria community and their microbial interactions under different nutrient conditions (SAD and SMD) in sulfur-supported denitrification system.
Afficher plus [+] Moins [-]Waterborne protozoan pathogens in environmental aquatic biofilms: Implications for water quality assessment strategies Texte intégral
2020
Masangkay, Frederick R. | Milanez, Giovanni D. | Tsiami, Amalia | Hapan, Freida Z. | Somsak, Voravuth | Kotepui, Manas | Tangpong, Jitbanjong | Karanis, Panagiotis
Biofilms containing pathogenic organisms from the water supply are a potential source of protozoan parasite outbreaks and a significant public health concern. The aim of the present study was to demonstrate the simultaneous and multi-spatial occurrence of waterborne protozoan pathogens (WBPP) in substrate-associated biofilms (SAB) and compare it to surface water (SW) and sediments with bottom water (BW) counterparts using manual filtration and elution from low-volume samples. For scenario purposes, simulated environmental biofilm contamination was created from in-situ grown one-month-old SAB (OM-SAB) that were spiked with Cryptosporidium parvum oocysts. Samples were collected from the largest freshwater reservoirs in Luzon, Philippines and a University Lake in Thailand. A total of 69 samples (23 SAB, 23 SW, and 23 BW) were evaluated using traditional staining techniques for Cryptosporidium, and Immunofluorescence staining for the simultaneous detection of Cryptosporidium and Giardia. WBPP were found in 43% SAB, 39% SW, and 39% BW of the samples tested in the present study with SAB results reflecting SW and BW results. Further highlights were demonstrated in the potential of using low-volume samples for the detection of parasites in source water. Scanning electron microscopy of OM-SAB samples revealed a naturally-associated testate amoeba shell, while Cryptosporidium oocysts spiked samples provided a visual profile of what can be expected from naturally contaminated biofilms. This study provides the first evidence for the simultaneous and multi-spatial occurrence of waterborne protozoan pathogens in low-volume aquatic matrices and further warrants SAB testing along with SW and BW matrices for improved water quality assessment strategies (iWQAS).
Afficher plus [+] Moins [-]Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas Texte intégral
2020
Jeong, Hyeryeong | Choi, Jin-young | Lee, Jihyun | Lim, Jaesoo | Ra, Kongtae
Understanding the relationship between road-deposited sediments (RDS) and total suspended solids (TSS) is essential for managing non-point pollution. Studying the heavy metal concentrations of RDS and TSS in rainfall is important to the development of RDS management strategies and to the design of effective stormwater management practices. We investigated the heavy metal (V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Pb) in RDS and TSS in rainfall runoff to assess the metal pollution level and to evaluate the contribution of RDS heavy metal pollution in the TSS. The heavy metal pollution in RDS and TSS in industrial areas was relatively higher in small particles (<125 μm), while TSS had a higher heavy metal concentration than RDS. In addition, the concentration of heavy metals in TSS increased rapidly during the initial rainfall. The amount of particles larger than 125 μm also increased, suggesting that large metal particles accumulated in industrial areas were also discharged in the form of non-point pollution. The amount of RDS per unit of industrial area (g/m²) and the accumulation of heavy metals (Pb, Cu, and Zn) (mg/m²) were 15- and 8–54-fold higher than those of urban areas, respectively. Considering particles <125 μm, which can be easily transported or discharged during rainfall, the contribution rate of RDS to TSS was 41.3%, but the average contribution rate to heavy metals in TSS was 22.1%. The average load of heavy metals from industrial areas in TSS was 77.9%. The load of Cu, Ni, As, Cd, and Sn exceeded 90%, indicating that most of these metals were attributed to industrial activities related to metal processing. Our results suggest the importance of efficient road cleaning and rainfall runoff management strategies to solve the heavy metal pollution problem caused by non-point sources in industrial areas.
Afficher plus [+] Moins [-]Particle exposure and inhaled dose while commuting in Lisbon Texte intégral
2020
Correia, C. | Martins, V. | Cunha-Lopes, I. | Faria, T. | Diapouli, E. | Eleftheriadis, K. | Almeida, S.M.
While commuting, individuals are exposed to high concentrations of urban air pollutants that can lead to adverse health effects. This study aims to assess commuters’ exposure to particulate matter (PM) when travelling by car, bicycle, metro and bus in Lisbon. Mass concentrations of PM₂.₅ and PM₁₀ were higher in the metro. On the other hand, the highest BC and PN₀.₀₁₋₁ average concentrations were found in car and bus mode, respectively. In cars, the outdoor concentrations and the type of ventilation appeared to affect the indoor concentrations. In fact, the use of ventilation led to a decrease of PM₂.₅ and PM₁₀ concentrations and to an increase of BC concentrations. The highest inhaled doses were mostly observed in bicycle journeys, due to the longest travel periods combined with enhanced physical activity and, consequently, highest inhalation rates.
Afficher plus [+] Moins [-]High-content screening in zebrafish identifies perfluorooctanesulfonamide as a potent developmental toxicant Texte intégral
2020
Dasgupta, Subham | Reddam, Aalekhya | Liu, Zekun | Liu, Jinyong | Volz, David C.
Per- and polyfluoroalkyl substances (PFASs) have been used for decades within industrial processes and consumer products, resulting in frequent detection within the environment. Using zebrafish embryos, we screened 38 PFASs for developmental toxicity and revealed that perfluorooctanesulfonamide (PFOSA) was the most potent developmental toxicant, resulting in elevated mortality and developmental abnormalities following exposure from 6 to 24 h post fertilization (hpf) and 6 to 72 hpf. PFOSA resulted in a concentration-dependent increase in mortality and abnormalities, with surviving embryos exhibiting a >12-h delay in development at 24 hpf. Exposures initiated at 0.75 hpf also resulted in a concentration-dependent delay in epiboly, although these effects were not driven by a specific sensitive window of development. We relied on mRNA-sequencing to identify the potential association of PFOSA-induced developmental delays with impacts on the embryonic transcriptome. Relative to stage-matched vehicle controls, these data revealed that pathways related to hepatotoxicity and lipid transport were disrupted in embryos exposed to PFOSA from 0.75 to 14 hpf and 0.75 to 24 hpf. Therefore, we measured liver area as well as neutral lipids in 128-hpf embryos exposed to vehicle (0.1% DMSO) or PFOSA from 0.75 to 24 hpf and clean water from 24 to 128 hpf, and showed that PFOSA exposure from 0.75 to 24 hpf resulted in a decrease in liver area and increase in yolk sac neutral lipids at 128 hpf. Overall, our findings show that early exposure to PFOSA adversely impacts embryogenesis, an effect that may lead to altered lipid transport and liver development.
Afficher plus [+] Moins [-]Human exposure to PBDEs in e-waste areas: A review Texte intégral
2020
Polybrominated biphenyl ethers (PBDEs) are commonly added to electronic products for flame-retardation effects, and are attracting more and more attentions due to their potential toxicity, durability and bioaccumulation. This study conducts a sysmtematic review to understand the human exposure to PBDEs from e-waste recycling, especially exploring the exposure pathways and human burden of PBDEs as well as investigating the temporal trend of PBDEs exposure worldwide. The results show that the particular foods (contaminated fish, poultry, meat and breast milk) ingestion, indoor dust ingestion and indoor air inhalation may be key factors leading to human health risks of PBDEs exposure in e-waste recycling regions. Residents and some vulnerable groups (occupational workers and children) in e-waste recycling areas may face higher exposure levels and health risks. PBDE exposure is closely related to exposure level, exposure duration, e-waste recycling methods, and dietary customs. High levels of PBDEs are found in human tissues (breast milk, hair, blood (serum), placenta and other tissues) in e-waste areas, at far higher levels than in other areas. Existing data indicate that PBDE exposure levels do not present any apparent downward trend, and will possibly cause serious human diseases. More epidemiological studies are still needed to provide a solid basis for health risk assessment.
Afficher plus [+] Moins [-]Characteristics and health risk assessment of polycyclic aromatic hydrocarbons associated with dust in household evaporative coolers Texte intégral
2020
This study reports a characterization of indoor polycyclic aromatic hydrocarbons (PAHs) associated with dust (dust-PAHs) in household evaporative coolers and their associated health effects. Extensive analysis showed that the indoor dust-PAHs stemmed mostly from pyrogenic sources (vehicular emissions) with mean total concentrations limited between 131 and 429 ng g−1. The distribution pattern of PAHs based on number of rings exhibited the following order of decreasing relative abundance: 4 > 3 > 5 > 6 > 2 rings. Results indicate that the mutagenicity of dust-PAHs exceeded their carcinogenicity, but that the potential carcinogenic effects are still significant. The mean lifetime cancer risk for different age groups for three pathways based on Model 2 (dermal (1.39 × 10−1 to 1.91 × 10−2), ingestion (2.13 × 10−3 to 8.08 × 10−3) and inhalation (1.62 × 10−7 to 4.06 × 10−7)) was 7.4–146 times higher than values predicted by Model 1 (dermal (5.13 × 10−5 to 3.03 × 10−3), ingestion (9.34 × 10−5 to 1.31 × 10−3) and inhalation (7.13 × 10−20 to 1.68 × 10−20)). Hence, exposure to dust-PAHs in household evaporative coolers lead to high risk, especially for children (less than 11 years) (HQ = 2.71 × 10−20 to 54.8 and LTCRs = 7.13 × 10−20 to 1.39 × 10−1). Strategies should be considered to eliminate such pollutants to protect people, especially children, from the non-carcinogenic and carcinogenic effects by changing household evaporative coolers with other cooling systems.
Afficher plus [+] Moins [-]Regulation of lipid droplets via the PLCβ2-PKCα-ADRP pathway in granulosa cells exposed to cadmium Texte intégral
2020
In steroidogenic cells, steroids are synthesized de novo from cholesterol stored in lipid droplets (LDs). The size of LDs regulated by adipose differentiation-related protein (ADRP) is closely related to cholesterol ester hydrolysis. Many studies reported that cadmium (Cd) had dual effects on steroidogenesis in granulosa cells (GCs). However, the role of LD and its regulation in abnormal steroidogenesis caused by Cd exposure remain unknown. In current study, female rats were exposed to CdCl₂ during gestation and lactation, and influence of such exposure was investigated in ovarian GCs of female offspring. The size of LDs was found much smaller than normal in GCs; ADRP was down-regulated and hormone-sensitive lipase (HSL) phosphorylation was increased, followed by up-regulation of steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (CYP11A1); the expression of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2 (PLCβ2) and protein kinase C alpha type (PKCα) were both decreased accompanying the ADRP down-regulation. This series of events resulted in a high level of progesterone in serum. Similar results were demonstrated in GCs treated with 20 μM CdCl₂ for 24 h in vitro. The protein level of ADRP was decreased after gene silencing of PLCβ2/PKCα, and the knockdown of PLCβ2/PKCα/ADRP led to micro-sized LD formation. We found that Cd exposure down-regulated ADRP by inhibiting the PLCβ2-PKCα signaling pathway, reduced the size of LDs, and promoted HSL phosphorylation. StAR and CYP11A1 were both up-regulated following the hydrolysis of cholesterol ester, which led to a high production of progesterone. LD thereby is a target subcellular organelle for Cd to affect steroid hormone synthesis in ovarian GCs. These findings might help to uncover the mechanism of ovarian dysfunction and precocious puberty caused by Cd pollution.
Afficher plus [+] Moins [-]