Affiner votre recherche
Résultats 1741-1750 de 7,921
Multigenerational study of the obesogen effects of bisphenol S after a perinatal exposure in C57BL6/J mice fed a high fat diet
2021
Brulport, Axelle | Le Corre, Ludovic | Maquart, Guillaume | Barbet, Virginie | Dastugue, Aurélie | Severin, Isabelle | Vaiman, Daniel | Chagnon, Marie-Christine
Bisphenol S is an endocrine disruptor exhibiting metabolic disturbances, especially following perinatal exposures. To date, no data are available on the obesogen effects of BPS in a mutligenerational issue.We investigated obesogen effects of BPS in a multigenerational study by focusing on body weight, adipose tissue and plasma parameters in male and female mice.Pregnant C57BL6/J mice were exposed to BPS (1.5 μg/kg bw/day ie a human equivalent dose of 0.12 μg/kg bw/day) by drinking water from gestational day 0 to post natal day 21. All offsprings were fed with a high fat diet during 15 weeks. Body weight was monitored weekly and fat mass was measured before euthanasia. At euthanasia, blood glucose, insuline, triglyceride, cholesterol and no esterified fatty acid plasma levels were determined and gene expressions in visceral adipose tissue were assessed. F1 males and females were mated to obtain the F2 generation. Likewise, the F2 mice were cross-bred to obtain F3. The same analyses were performed.In F1 BPS induced an overweight in male mice associated to lipolysis gene expressions upregulation. In F1 females, dyslipidemia was observed. In F2, BPS exposure was associated to an increase in body weight, fat and VAT masses in males and females. Several plasma parameters were increased but with a sex related pattern (blood glucose, triglycerides and cholesterol in males and NEFA in females). We observed a down-regulation in mRNA expression of gene involved in lipogenesis and in lipolysis for females but only in the lipogenesis for males. In F3, a decrease in VAT mass and an upregulation of lipogenesis gene expression occurred only in females.BPS perinatal exposure induced sex-dependent obesogen multigenerational effects, the F2 generation being the most impacted. Transgenerational disturbances persisted only in females.
Afficher plus [+] Moins [-]PET nanoplastics interactions with water contaminants and their impact on human cells
2021
Magrì, Davide | Veronesi, Marina | Sánchez-Moreno, Paola | Tolardo, Valentina | Bandiera, Tiziano | Pompa, Pier Paolo | Athanassiou, Athanassia | Fragouli, Despina
In recent years, many studies are focusing on the negative effects of plastic pollution, and in particular on the nanosized plastic fragments and their implications on the environment and human health. Nanoplastics in the environment interact with a great number of substances, many of which are dangerous to humans, but the interaction mechanisms, the complexes formation processes, and their biological impact are still poorly understood. Here we report a study on the interactions of polyethylene terephthalate nanoplastics, produced by laser ablation, with three different types of contaminants: glyphosate, levofloxacin and Hg²⁺ ions, and we demonstrate that the nanoplastics form complexes with all three contaminants through their favorable binding. Most importantly, this study highlights that to demonstrate the overall effect of the nanoplastics internalized by cells in vitro, it is important to combine alternative methodologies, such as metabolomics, with standard biological assays (i.e., cell viability and ROS production). In this way it becomes possible to better understand the body’s response to this new class of pollutants and their possible chronic toxicity.Summary: PET nanoplastics, fabricated by laser ablation, interact with aqueous pollutants forming nanoclusters. The nanoclusters affect the cells metabolism, suggesting long-term risks.
Afficher plus [+] Moins [-]Anaerobic reduction of high-polarity nitroaromatic compounds by electrochemically active bacteria: Roles of Mtr respiratory pathway, molecular polarity, mediator and membrane permeability
2021
Xiao, Xiang | Ma, Xiao-Lin | Wang, Lu-Guang | Long, Fei | Li, Ting-Ting | Zhou, Xiang-Tong | Liu, Hong | Wu, Li-Jun | Yu, Han-Qing
Electrochemically active bacteria (EAB) are effective for the bioreduction of nitroaromatic compounds (NACs), but the exact reduction mechanisms are unclear yet. Therefore, 3-nitrobenzenesulfonate (NBS) was used to explore the biodegradation mechanism of NACs by EAB. Results show that NBS could be anaerobically degraded by Shewanella oneidensis MR-1. The generation of aminoaromatic compounds was accompanied with the NBS reduction, indicating that NBS was biodegraded via reductive approach by S. oneidensis MR-1. The impacts of NBS concentration and cell density on the NBS reduction were evaluated. The removal of NBS depends mainly on the transmembrane electron transfer of S. oneidensis MR-1. Impairment of Mtr respiratory pathway was found to mitigate the reduction of NBS, suggesting that the anaerobic biodegradation of NBS occurred extracellularly. Knocking out cymA severely impaired the extracellular reduction ability of S. oneidensis MR-1. However, the phenotype of ΔcymA mutant could be compensated by the exogenous electron mediators, implying the trans-outer membrane diffusion of mediators into the periplasmic space. This work provides a new insight into the anaerobic reduction of aromatic contaminants by EAB.
Afficher plus [+] Moins [-]The atmospheric concentrations and emissions of major halocarbons in China during 2009–2019
2021
Yi, Liying | Wu, Jing | An, Minde | Xu, Weiguang | Fang, Xuekun | Yao, Bo | Li, Yixi | Gao, Ding | Zhao, Xingchen | Hu, Jianxin
Due to the characteristics of ozone-depleting and high global warming potential, chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) have been restricted by the Montreal Protocol and its amendments over the world. Considering that China is one of the main contributors to the emission of halocarbons, a long-term atmospheric observation on major substances including CFC-11 (CCl₃F), CFC-12 (CCl₂F₂), HCFC-22 (CHClF₂), HCFC-141b (CH₃CCl₂F), HCFC-142b (CH₃CClF₂) and HFC-134a (CH₂FCF₃) was conducted in five cities (Beijing, Hangzhou, Guangzhou, Lanzhou and Chengdu) of China during 2009–2019. The atmospheric concentrations of CFC-11, CFC-12, HCFC-141b and HCFC-142b all showed declining trends on the whole while those of HCFC-22 and HFC-134a were opposite. A paired sample t-test showed that the ambient mixing ratios of HCFC-22 and HFC-134a in cities were 41.9% and 25.7% higher on average than those in suburban areas, respectively, while the other substances did not show significant regional differences. The annual emissions of halocarbons were calculated using an interspecies correlation method and the results were generally consistent with the published estimates. Discrepancies between bottom-up inventories and the estimates in this study for CFCs emissions were found. Among the most consumed ozone depleting substances (ODSs) in China, CFCs accounted for 75.1% of the ozone depletion potential (ODP)-weighted emissions while HCFCs contributed a larger proportion (58.6%) of CO₂-equivalent emissions in 2019. China's emissions of HCFC-141b and HCFC-142b contributed the most to the global emission (17.8%–48.0%). The elimination of HCFCs in China will have a crucial impact on the HCFCs phase-out in the world.
Afficher plus [+] Moins [-]Application of transcriptome analysis to understand the adverse effects of hydrogen peroxide exposure on brain function in common carp (Cyprinus carpio)
2021
Jia, Rui | Du, Jinliang | Cao, Liping | Feng, Wenrong | He, Qin | Xu, Pao | Yin, Guojun
Hydrogen peroxide (H₂O₂), as a common disinfectant, has been extensively used in aquaculture. The toxicity of high ambient H₂O₂ for gills and liver of fish has received attention from many researchers. However, whether H₂O₂ exposure induced brain injury and neurotoxicity has not been reported in fish. Therefore, this study aimed to explore the potential mechanism of H₂O₂ toxicity in brain of common carp via transcriptome analysis and biochemical parameter detection. The fish were exposed to 0 (control) and 1 mM of H₂O₂ for 1 h per day lasting 14 days. The results showed that H₂O₂ exposure caused oxidative damage in brain evidenced by decreased glutathione (GSH), total antioxidant capacity (T-AOC) and nicotinamide adenine dinucleotide (NAD⁺) levels, and increased formation of malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG). Meanwhile, H₂O₂ exposure reduced 5-hydroxytryptamine (5-HT) level, and down-regulated tryptophan hydroxylase 1 (tph1a), tph2, 5-hydroxytryptamine receptor 1A-beta (htr1ab) and htr2b expression in brain. Transcriptome analysis showed that H₂O₂ exposure up-regulated 604 genes and down-regulated 1209 genes in brain. Go enrichment displayed that the differently expressed genes (DEGs) were enriched mainly in cellular process, single-organism process, metabolic process, and biological regulation in the biological process category. Further, KEGG enrichment indicated that H₂O₂ exposure led to dysregulation of neurotransmitter signals including depression of glutamatergic synapse, GABAergic synapse and endocannabinoid signaling. Also, we found the alteration of three key pathways including calcium, cAMP and HIF-1 in brain after H₂O₂ exposure. In conclusion, our data indicated that H₂O₂ exposure induced oxidative damage and neurotoxicity, possibly related to dysregulation of neurotransmitters and calcium, cAMP and HIF-1 signaling pathways, which may adversely affect learning, memory and social responses of common carp. This study provided novel insight into biological effects and underlying mechanism of H₂O₂ toxicity in aquatic animal, and contributed to proper application of H₂O₂ in aquaculture.
Afficher plus [+] Moins [-]Interactions between pyrene and heavy metals and their fates in a soil-maize (Zea mays L.) system: Perspectives from the root physiological functions and rhizosphere microbial community
2021
Wang, Yuhui | Li, Manjie | Liu, Zhaowei | Zhao, Juanjuan | Chen, Yongcan
The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in agricultural soils has become a worldwide food crop security concern. Pot experiments, rhizosphere microbial metagenomic sequencing, and root metatranscriptomic sequencing were performed to investigate the interactions among pyrene, Cu, and Cd in a soil-maize (Zea mays L.) system. This study provided direct evidence that the co-presence of PAHs and heavy metals changed the root physiological functions and the rhizosphere microbial community, which subsequently influenced the fate of the contaminants. Co-contamination at low levels tended to enhance the uptake potential and biodegradation performance of the plant, whereas increased contaminant concentrations produced opposite effects. The co-presence of 1000 mg/kg Cu decreased the abundance of Mycobacterium in the rhizosphere and reduced pyrene degradation by 12%–16%. The presence of 400–750 mg/kg pyrene altered the metabolic processes, molecular binding functions, and catalytic activity of enzymes in the maize roots, thus impeding the phytoextraction of Cu and Cd. Competitive absorption between Cu and Cd was observed for the 800–1000 mg/kg Cu and 50–100 mg/kg Cd co-treatment, in which Cu showed a competitive advantage, enhancing its root-to-shoot translocation. These findings provide important information for the production of safe crops and for the development of phytoremediation technologies.
Afficher plus [+] Moins [-]Co-application of DMPSA and NBPT with urea mitigates both nitrous oxide emissions and nitrate leaching during irrigated potato production
2021
Souza, Emerson F.C. | Rosen, Carl J. | Venterea, Rodney T.
Potato (Solanum tuberosum L.) production in irrigated coarse-textured soils requires intensive nitrogen (N) fertilization which may increase reactive N losses. Biological soil additives including N-fixing microbes (NFM) have been promoted as a means to increase crop N use efficiency, though few field studies have evaluated their effects, and none have examined the combined use of NFM with microbial inhibitors. A 2-year study (2018–19) in an irrigated loamy sand quantified the effects of the urease inhibitor NBPT, the nitrification inhibitor DMPSA, NFM, and the additive combinations DMPSA + NBPT and DMPSA + NFM on potato performance and growing season nitrous oxide (N₂O) emissions and nitrate (NO₃⁻) leaching. All treatments, except a zero-N control, received diammonium phosphate at 45 kg N ha⁻¹ and split applied urea at 280 kg N ha⁻¹. Compared with urea alone, DMPSA + NBPT reduced NO₃⁻ leaching and N₂O emissions by 25% and 62%, respectively, and increased crop N uptake by 19% in one year, although none of the additive treatments increased tuber yields. The DMPSA and DMPSA + NBPT treatments had greater soil ammonium concentration, and all DMPSA-containing treatments consistently reduced N₂O emissions, compared to urea-only. Use of NBPT by itself reduced NO₃⁻ leaching by 21% across growing seasons and N₂O emissions by 37% in 2018 relative to urea-only. In contrast to the inhibitors, NFM by itself increased N₂O by 23% in 2019; however, co-applying DMPSA with NFM reduced N₂O emissions by ≥ 50% compared to urea alone. These results demonstrate that DMPSA can mitigate N₂O emissions in potato production systems and that DMPSA + NBPT can reduce both N₂O and NO₃⁻ losses and increase the N supply for crop uptake. This is the first study to show that combining a nitrification inhibitor with NFM can result in decreased N₂O emissions in contrast to unintended increases in N₂O emissions that can occur when NFM is applied by itself.
Afficher plus [+] Moins [-]Mechanism of copper nanoparticle toxicity in rainbow trout olfactory mucosa
2021
Razmara, Parastoo | Imbery, Jacob J. | Koide, Emily | Helbing, Caren C. | Wiseman, Steve B. | Gauthier, Patrick T. | Bray, Douglas F. | Needham, Maurice | Haight, Travis | Zovoilis, Athanasios | Pyle, Gregory G.
Chemosensory perception is crucial for fish reproduction and survival. Direct contact of olfactory neuroepithelium to the surrounding environment makes it vulnerable to contaminants in aquatic ecosystems. Copper nanoparticles (CuNPs), which are increasingly used in commercial and domestic applications due their exceptional properties, can impair fish olfactory function. However, the molecular events underlying olfactory toxicity of CuNPs are largely unexplored. Our results suggested that CuNPs were bioavailable to olfactory mucosal cells. Using RNA-seq, we compared the effect of CuNPs and copper ions (Cu²⁺) on gene transcript profiles of rainbow trout (Oncorhynchus mykiss) olfactory mucosa. The narrow overlap in differential gene expression between the CuNP- and Cu²⁺-exposed fish revealed that these two contaminants exert their effects through distinct mechanisms. We propose a transcript-based conceptual model that shows that olfactory signal transduction, calcium homeostasis, and synaptic vesicular signaling were affected by CuNPs in the olfactory sensory neurons (OSNs). Neuroregenerative pathways were also impaired by CuNPs. In contrast, Cu²⁺ did not induce toxicity pathways and rather upregulated regeneration pathways. Both Cu treatments reduced immune system pathway transcripts. However, suppression of transcripts that were associated with inflammatory signaling was only observed with CuNPs. Neither oxidative stress nor apoptosis were triggered by Cu²⁺ or CuNPs in mucosal cells. Dysregulation of transcripts that regulate function, maintenance, and reestablishment of damaged olfactory mucosa represents critical mechanisms of toxicity of CuNPs. The loss of olfaction by CuNPs may impact survival of rainbow trout and impose an ecological risk to fish populations in contaminated environments.
Afficher plus [+] Moins [-]Ambient viral and bacterial distribution during long-range transport in Northern Taiwan
2021
Chen, Nai-Tzu | Cheong, Ngok-Song | Lin, Chuan-Yao | Tseng, Chun-Chieh | Su, Huey-Jen
Long-range transport (LRT) reportedly carries air pollutants and microorganisms to downwind areas. LRT can be of various types, such as dust storm (DS) and frontal pollution (FP); however, studies comparing their effects on bioaerosols are lacking. This study evaluated the effect of LRT on viral and bacterial concentrations in Northern Taiwan. When LRT occurred and possibly affected Taiwan from August 2013 to April 2014, air samples (before, during, and after LRT) were collected in Cape Fugui (CF, Taiwan’s northernmost point) and National Taiwan University (NTU). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was applied to quantify influenza A virus. qPCR and qPCR coupled with propidium monoazide were, respectively, used to quantify total and viable bacteria. Types and occurrence of LRT were confirmed according to the changing patterns of meteorological factors and air pollution, air mass sources (HYSPLIT model), and satellite images. Two Asian DS and three FP cases were included in this study. Influenza A virus was detected only on days before and during FP occurred on January 3–5, 2014, with concentrations of 0.87 and 10.19 copies/m³, respectively. For bacteria, the increase in concentrations of total and viable cells during Asian DSs (17–19 and 25–29 November 2013) was found at CF only (from 3.13 to 3.40 and from 2.62 to 2.85 log copies/m³, respectively). However, bacterial levels at NTU and CF both increased during FP and lasted for 2 days after FP. In conclusion, LRT increased the levels of influenza A virus and bacteria in the ambient air of Northern Taiwan, particularly at CF. During and 2 days (at least) after LRT, people should avoid outdoor activities, especially in case of FP.
Afficher plus [+] Moins [-]Analysis of cold-start NO2 and NOx emissions, and the NO2/NOx ratio in a diesel engine powered with different diesel-biodiesel blends
2021
Zare, Ali | Stevanovic, Svetlana | Jafari, Mohammad | Verma, Puneet | Babaie, Meisam | Yang, Liping | Rahman, M.M. | Ristovski, Zoran D. | Brown, Richard J. | Bodisco, Timothy A.
In the transportation sector, the share of biofuels such as biodiesel is increasing and it is known that such fuels significantly affect NOx emissions. In addition to NOx emission from diesel engines, which is a significant challenge to vehicle manufacturers in the most recent emissions regulation (Euro 6.2), this study investigates NO₂ which is a toxic emission that is currently unregulated but is a focus to be regulated in the next regulation (Euro 7). This manuscript studies how the increasing share of biofuels affects the NO₂, NOx, and NO₂/NOx ratio during cold-start (in which the after-treatment systems are not well-effective and mostly happens in urban areas). Using a turbocharged cummins diesel engine (with common-rail system) fueled with diesel and biofuel derived from coconut (10 and 20% blending ratio), this study divides the engine warm-up period into 7 stages and investigates official cold- and hot-operation periods in addition to some intermediate stages that are not defined as cold in the regulation and also cannot be considered as hot-operation. Engine coolant, lubricating oil and exhaust temperatures, injection timing, cylinder pressure, and rate of heat release data were used to explain the observed trends. Results showed that cold-operation NOx, NO₂, and NO₂/NOx ratio were 31–60%, 1.14–2.42 times, and 3–8% higher than the hot-operation, respectively. In most stages, NO₂ and the NO₂/NOx ratio with diesel had the lowest value and they increased with an increase of biofuel in the blend. An injection strategy change significantly shifted the in-cylinder pressure and heat release diagrams, aligned with the sudden NOx drop during the engine warm-up. The adverse effect of cold-operation on NOx emissions increased with increasing biofuel share.
Afficher plus [+] Moins [-]