Affiner votre recherche
Résultats 1751-1760 de 2,512
Leachates from solid wastes: chemical and eco(geno)toxicological differences between leachates obtained from fresh and stabilized industrial organic sludge Texte intégral
2014
Chiochetta, Claudete G. | Goetten, Luís C. | Almeida, Sônia M. | Quaranta, Gaetana | Cotelle, Sylvie | Radetski, Claudemir M.
The chemical and ecotoxicological characteristics of fresh and stabilized industrial organic sludge leachates were compared to obtain information regarding how the stabilization process can influence the ecotoxic potential of this industrial waste, which could be used for the amendment of degraded soil. Physicochemical analysis of the sludge leachates, as well as a battery of eco(geno)toxicity tests on bacteria, algae, daphnids, and higher plants (including Vicia faba genotoxicity test) and the determination of hydrolytic enzyme activity, was performed according to standard methods. The chemical comparison of the two types of leachate showed that the samples obtained from stabilized sludge had a lower organic content and higher metal content than leachates of the fresh sludge. The eco(geno)toxicological results obtained with aquatic organisms showed that the stabilized sludge leachate was more toxic than the fresh sludge leachate, both originating from the same industrial organic sludge sample. Nevertheless, phytotoxicity tests carried out with a reference peat soil irrigated with stabilized sludge leachate showed the same toxicity as the fresh sludge leachate. In the case of the industrial solid organic sludge studied, stabilization through a biodegradation process promoted a higher metal mobility/bioavailability/eco(geno)toxicity in the stabilized sludge leachate compared to the fresh sludge leachate.
Afficher plus [+] Moins [-]Organotin compounds in surface sediments of the Southern Baltic coastal zone: a study on the main factors for their accumulation and degradation Texte intégral
2014
Filipkowska, Anna | Kowalewska, Grażyna | Pavoni, Bruno
Sediment samples were collected in the Gulf of Gdańsk, and the Vistula and Szczecin Lagoons—all located in the coastal zone of the Southern Baltic Sea—just after the total ban on using harmful organotins in antifouling paints on ships came into force, to assess their butyltin and phenyltin contamination extent. Altogether, 26 sampling stations were chosen to account for different potential exposure to organotin pollution and environmental conditions: from shallow and well-oxygenated waters, shipping routes and river mouths, to deep and anoxic sites. Additionally, the organic carbon content, pigment content, and grain size of all the sediment samples were determined, and some parameters of the near-bottom water (oxygen content, salinity, temperature) were measured as well. Total concentrations of butyltin compounds ranged between 2 and 182 ng Sn g⁻¹d.w., whereas phenyltins were below the detection limit. Sediments from the Gulf of Gdańsk and Vistula Lagoon were found moderately contaminated with tributyltin, whereas those from the Szczecin Lagoon were ranked as highly contaminated. Butyltin degradation indices prove a recent tributyltin input into the sediments adjacent to sites used for dumping for dredged harbor materials and for anchorage in the Gulf of Gdańsk (where two big international ports are located), and into those collected in the Szczecin Lagoon. Essential factors affecting the degradation and distribution of organotins, based on significant correlations between butyltins and environmental variables, were found in the study area.
Afficher plus [+] Moins [-]Dechlorination of chloroorganics, decolorization, and simultaneous bioremediation of Cr6+ from real tannery effluent employing indigenous Bacillus cereus isolate Texte intégral
2014
Tripathi, Manikant | Garg, Satyendra Kumar
A native Bacillus cereus isolate has been employed, for the first time, for simultaneous decolorization, dechlorination of chloroorganics, and Cr⁶⁺remediation from the real tannery effluent. Most of the physicochemical variables in 3:1 diluted effluent were well above the standard prescribed limits, which decreased substantially upon microbial treatment. The extent of bioremediation was better in diluted (3:1) as compared to undiluted effluent supplemented with nutrients and augmented with B. cereus isolate. Maximum growth, effluent decolorization (42.5 %), dechlorination (74.1 %), and Cr⁶⁺remediation (34.2 %) were attained with 4.0 % (v/v) inoculum, 0.8 % glucose, and 0.2 % ammonium chloride in 3:1 diluted effluent at natural pH (8.1) within 72 h of incubation. The efficiency of bioremediation in a bioreactor was higher as compared to a flask trial during 72 h of incubation: decolorization (47.9 %) was enhanced by 5.4 %, dechlorination (77.4 %) by 3.3 %, and Cr⁶⁺removal (41.7 %) by 7.5 % at an initial color of 286 Pt-Co units and initial concentration of 62 mg chloride ions and 108 mg l⁻¹Cr⁶⁺. Immobilized biomass of Pseudomonas putida and B. cereus coculture enhanced the extent of Cr⁶⁺remediation (51.9 %) by 10.2 % compared to the bioreactor trial. Chromate reductase activity and reduced Cr directly correlated and were mainly associated with soluble fraction of B. cereus plus effluent natural microflora. The GC-MS analyses revealed the formation of metabolites such as acetic acid and 2-butenoic acid in bacterially treated effluent. The supplementation of nutrients along with B. cereus augmentation is required for efficient effluent bioremediation.
Afficher plus [+] Moins [-]Differences in phosphorus translocation contributes to differential arsenic tolerance between plants of Borreria verticillata (Rubiaceae) from mine and non-mine sites Texte intégral
2014
Campos, N. V. | Loureiro, M. E. | Azevedo, A. A.
We have identified new arsenic-tolerant plant species Borreria verticillata (Rubiaceae) that has mine and non-mine populations at a highly contaminated site (CS) and an uncontaminated site (UCS), respectively, in Brazil. Plants of B. verticillata from both sites were cultivated at different As and P concentrations. At low P concentration, CS plants showed reduced As uptake, higher P translocation to shoots, higher constitutive levels of phenolic compounds in roots, and higher tolerance to this metalloid. At the lowest P and highest As concentration, CS plants showed higher biomass. In addition, CS plants showed higher P uptake in the absence of As, suggesting that more efficient P translocation could contribute more to tolerance than decreased As uptake. In contrast, at low P concentration, UCS plants showed higher As content in shoot and root, increase in phenol levels in roots, reduction in dry biomass, and decrease of the effective efficiency of photochemical reactions and the electron transport rate. Under higher P concentrations, the decrease in As uptake was similar in both populations. The differences between the two populations with respect to As and P uptake suggest that altered kinetic properties or expression of P transporters contribute to higher As tolerance in B. verticillata from CS. As a ruderal and As-tolerant plant, B. verticillata could be successfully used for the revegetation of contaminated soils.
Afficher plus [+] Moins [-]Risk assessment of heavy metal toxicity of soil irrigated with treated wastewater using heat shock proteins stress responses: case of El Hajeb, Sfax, Tunisia Texte intégral
2014
Ben Fredj, Fahmi | Wali, A. | Khadhraoui, Moncef | Han, Junkyu | Funamizu, Naoyuki | Ksibi, Mohamed | Isoda, Hiroko
Heavy metal contamination of soil resulting from treated wastewater irrigation can cause serious concerns resulting from consuming contaminated crops. Therefore, it is crucial to assess hazard related to wastewater reuse. In the present investigation, we suggest the use of biomarker approach as a new tool for risk assessment of wastewater reuse in irrigation as an improvement to the conventional detection of physicochemical accumulation in irrigated sites. A field study was conducted at two major sites irrigated with treated wastewater and comparisons were made with a control site. Different soil depths were considered to investigate the extent of heavy metal leaching, the estrogenic activity, and the biomarker response. Results have shown that a longer irrigation period (20 years) caused a slight decrease in soil metal levels when compared to the soil irrigated for 12 years. The highest levels of Cr, Co, Ni, Pb, and Zn were detected at 20 and 40 cm horizons in plots irrigated with wastewater for 12 years. The latter finding could be attributed to chemical leaching to deeper plots for longer irrigation period. Furthermore, the treated wastewater sample showed a high estrogenic activity while none of the soil samples could induce any estrogenic activity. Regarding the stress response, it was observed that the highest stress shown by the HSP47 promoter transfected cells was induced by a longer irrigation period. Finally, the treated wastewater and the irrigated soils exhibited an overexpression of HSP60 in comparison with reference soil following 1 h exposure. In conclusion, in vitro techniques can be efficiently used to assess potential hazard related to wastewater reuse.
Afficher plus [+] Moins [-]Synthesis and evaluation as biodegradable herbicides of halogenated analogs of L-meta-tyrosine Texte intégral
2014
Movellan, Julie | Rocher, Françoise | Chikh, Zohra | Marivingt-Mounir, Cécile | Bonnemain, Jean-Louis | Chollet, Jean-François
L-meta-tyrosine is an herbicidal nonprotein amino acid isolated some years ago from fine fescue grasses and characterized by its almost immediate microbial degradation in soil (half-life <24 h). Nine monohalogenated or dihalogenated analogs of this allelochemical have been obtained through a seven-step stereoselective synthesis from commercial halogenated phenols. Bioassays showed a large range of biological responses, from a growth root inhibition of lettuce seedling similar to that noted with m-tyrosine [2-amino-3-(2-chloro-5-hydroxyphenyl)propanoic acid or compound 8b] to an increase of the primary root growth concomitant with a delay of secondary root initiation [2-amino-3-[2-fluoro-5-hydroxy-3-(trifluoromethyl)phenyl]propanoic acid or compound 8h]. Compound 8b was slightly less degraded than m-tyrosine in the nonsterilized nutritive solution used for lettuce development, while the concentration of compound 8h remained unchanged for at least 2 weeks. These data indicate that it is possible to manipulate both biological properties and degradation of m-tyrosine by halogen addition.
Afficher plus [+] Moins [-]Industrial metabolism of chlorine: a case study of a chlor-alkali industrial chain Texte intégral
2014
Han, Feng | Li, Wenfeng | Yu, Fei | Cui, Zhaojie
Substance flow analysis (SFA) is applied to a case study of chlorine metabolism in a chlor-alkali industrial chain. A chain-level SFA model is constructed, and eight indices are proposed to analyze and evaluate the metabolic status of elemental chlorine. The primary objectives of this study are to identify low-efficiency links in production processes and to find ways to improve the operational performance of the industrial chain. Five-year in-depth data collection and analysis revealed that system production efficiency and source efficiency continued increasing since 2008, i.e., when the chain was first formed, at average annual growth rates of 21.01 % and 1.01 %, respectively. In 2011, 64.15 % of the total chlorine input was transformed into final products. That is, as high as 98.50 % of the chlorine inputs were utilized when other by-products were counted. Chlorine loss occurred mostly in the form of chloride ions in wastewater, and the system loss rate was 0.54 %. The metabolic efficiency of chlorine in this case was high, and the chain system had minimal impact on the environment. However, from the perspectives of processing depth and economic output, the case study of a chlor-alkali industrial chain still requires expansion.
Afficher plus [+] Moins [-]The integrated biomarker response revisited: optimization to avoid misuse Texte intégral
2014
Devin, S. | Burgeot, T. | Giambérini, L. | Minguez, L. | Pain-Devin, S.
The integrated biomarker response revisited: optimization to avoid misuse Texte intégral
2014
Devin, S. | Burgeot, T. | Giambérini, L. | Minguez, L. | Pain-Devin, S.
The growing need to evaluate the quality of aquatic ecosystems led to the development of numerous monitoring tools. Among them, the development of biomarker-based procedures, that combine precocity and relevance, is recommended. However, multi-biomarker approaches are often hard to interpret, and produce results that are not easy to integrate in the environmental policies framework. Integrative index have been developed, and one of the most used is the integrated biomarker response (IBR). However, an analysis of available literature demonstrated that the IBR suffers from a frequent misuse and a bias in its calculation. Then, we propose here a new calculation method based on both a more simple formula and a permutation procedure. Together, these improvements should rightly avoid the misuse and bias that were recorded. Additionally, a case study illustrates how the new procedure enabled to perform a reliable classification of site along a pollution gradient based on biomarker responses used in the IBR calculations.
Afficher plus [+] Moins [-]The integrated biomarker response revisited: optimization to avoid misuse Texte intégral
2014
Devin, S. | Burgeot, Thierry | Giamberini, L. | Minguez, L. | Pain-devin, S.
The growing need to evaluate the quality of aquatic ecosystems led to the development of numerous monitoring tools. Among them, the development of biomarker-based procedures, that combine precocity and relevance, is recommended. However, multi-biomarker approaches are often hard to interpret, and produce results that are not easy to integrate in the environmental policies framework. Integrative index have been developed, and one of the most used is the integrated biomarker response (IBR). However, an analysis of available literature demonstrated that the IBR suffers from a frequent misuse and a bias in its calculation. Then, we propose here a new calculation method based on both a more simple formula and a permutation procedure. Together, these improvements should rightly avoid the misuse and bias that were recorded. Additionally, a case study illustrates how the new procedure enabled to perform a reliable classification of site along a pollution gradient based on biomarker responses used in the IBR calculations.
Afficher plus [+] Moins [-]Why air quality in the Alps remains a matter of concern. The impact of organic pollutants in the alpine area Texte intégral
2014
Schroeder, P. | Belis, C. A. | Schnelle-Kreis, J. | Herzig, R. | Prevot, A. S. H. | Raveton, M. | Kirchner, M. | Catinon, M.
In the middle of Europe, the Alps form a geographical and meteorological trap for atmospheric pollutants including volatile and semi-volatile organic compounds emitted in the surrounding lowlands. This is due to their barrier effects, high precipitation rates, and low ambient temperatures. Also the pollutants emitted in the cities inside the Alps spread in the region depending on orographic and meteorological conditions. Although a number of studies on the distribution and effect of pollutants in the Alps has been published, comprehensive information on potential hazards, and ways to improve this sensible environment are lacking. This opinion paper is the result of a discussion during the Winterseminar of the AlpsBioCluster project in Munich. It summarizes the current literature and presents some case studies on local pollution sources in the Alps, and the possibility of using biomonitoring techniques to assess critical pollution loads and distributions.
Afficher plus [+] Moins [-]Photocatalytic degradation of molinate in aqueous solutions Texte intégral
2014
Bizani, E. | Lambropoulou, D. | Fytianos, K. | Poulios, I.
In this study, the degradation of molinate through heterogeneous photocatalysis, using two different types of the semiconductor TiO₂ as photocatalyst, as well as through homogeneous treatment, applying the photo-Fenton reaction, has been investigated. As far as heterogeneous photocatalysis is concerned, the degradation of the pesticide follows apparent first-order kinetics, while the type of the catalyst and the pH value of the solution affect the degradation rate. The effect of the addition of electron scavengers (H₂O₂ and K₂S₂O₈) was also studied. In the case of photo-Fenton-assisted system, the degradation also follows pseudo-first-order kinetics. Parameters such as iron’s and electron scavenger’s concentration and inorganic ions strongly affect the degradation rate. The extent of pesticide mineralization was investigated using dissolved organic carbon (DOC) measurements. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fischeri. The detoxification and mineralization efficiency was found to be dependent on the system studied, and although it did not follow the rate of pesticide disappearance, it took place in considerable extent. The study of the photodegradation treatment was completed by the determination of the intermediate by-products formed during the process, which was carried out using LC-MS/MS technique and led to similar compounds with both processes.
Afficher plus [+] Moins [-]