Affiner votre recherche
Résultats 1791-1800 de 2,513
Characterization of fly ash from a circulating fluidized bed incinerator of municipal solid waste Texte intégral
2014
Zhang, Lin | Su, Xiaowen | Zhang, Zongliang | Liu, Siming | Xiao, Yuxin | Sun, Mingming | Su, Jixin
Treatment and disposal of fly ash in China are becoming increasingly difficult, since its production has steadily risen and its features are uncertain. The excess pollutant components of fly ash are the key factor affecting its treatment and resource utilization. In this study, fly ash samples collected from a power plant with circulating fluidized incinerators of municipal solid waste (MSW) located in Shandong Province (eastern China) were studied. The results showed that there were no obvious seasonal differences in properties of fly ash. The content of total salt, Zn, and pH exceeded the national standards and low-ring polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (Fs) were the main organic components of fly ash for this power plant, which posed great threats to the surrounding environment. The amount of Zn of fly ash was higher than other heavy metals, which should be due to alkaline batteries of MSW. The leachate of fly ash had low concentrations of heavy metals and the main soluble components were sulfates and chlorides. The major mineral crystals of fly ash were SiO₂, CaSO₄, and Fe₂O₃. The main organic pollutants were low-ring PAHs, polychlorinated PCDDs, and low-chlorinated PCDFs, and concentrations were lower than the limiting values of the national regulations. Additionally, the distribution of PCDD/Fs had either a positive or a negative linear correlation with fly ash and flue gas, which was associated with the chlorinated degree of PCDD/Fs. The analysis was conducted to fully understand the properties of fly ash and to take appropriate methods for further comprehensive utilization.
Afficher plus [+] Moins [-]Is an assessment factor of 10 appropriate to account for the variation in chemical toxicity to freshwater ectotherms under different thermal conditions? Texte intégral
2014
Ecotoxicity tests are often conducted following standard methods, and thus carried out at a fixed water temperature under controlled laboratory conditions. Yet, toxicity of a chemical contaminant may vary in a temperature-dependent manner, depending on the physiology of the test organism and physicochemical properties of the chemical. Although an assessment factor of 10 (AF10) is commonly adopted to account for variability in toxicity data related to temperature in the development of water quality guidelines and/or ecological risk assessment, no one has ever rigorously assessed the appropriateness of AF10 to account for potential variation in temperature-dependent chemical toxicity to aquatic organisms. This study, therefore, aims to address this issue through a meta-analysis by comparing median lethal concentration data for nine chemicals (cadmium, copper, nickel, lead, silver, zinc, arsenic, selenium and DDT) on a range of freshwater ectothermic animal species at different temperatures, and to assess whether AF10 is under- or over-protective for tropical and temperate freshwater ecosystems. Our results reveal varying extents of interaction between temperature and different chemicals on organisms and the complexity of these interactions. Applying AF10 sufficiently protects 90 % of the animal species tested over a range of temperatures for cadmium, copper, nickel, silver, zinc and DDT in the tropics, but it is insufficient to adequately encompass a larger temperature variation for most studied chemicals in temperate regions. It is therefore important to set specific AFs for different climatic zones in order to achieve the desired level of ecosystem protection.
Afficher plus [+] Moins [-]Aquatic environments polluted with antibiotics and heavy metals: a human health hazard Texte intégral
2014
Aquatic environments often receive wastewater containing pollutants such as antibiotics and heavy metals from hospital sewage, as well as contaminants from soil. The presence of these pollutants can increase the rate of exchange of resistant genes between environmental and pathogenic bacteria, which can make the treatment of various types of bacterial infections in humans and animals difficult, in addition to causing environmental problems such as ecological risk. In this study, two tetracycline-resistant Pseudomonas aeruginosa (EW32 and EW33), isolated from aquatic environments close to industries and a hospital in southeastern Brazil, were investigated regarding the possible association between tetracycline and heavy metal resistance. The isolate EW32 presented a conjugative plasmid with coresistance to tetracycline and copper, reinforcing the concern that antibiotic resistance by acquisition of plasmids can be induced by the selective pressure of heavy metals in the environment.
Afficher plus [+] Moins [-]Proteomic responses to lead-induced oxidative stress in Talinum triangulare Jacq. (Willd.) roots: identification of key biomarkers related to glutathione metabolisms Texte intégral
2014
Abhay Kumar, | Majeti, Narasimha Vara Prasad
In this study, Talinum triangulare Jacq. (Willd.) treated with different lead (Pb) concentrations for 7 days has been investigated to understand the mechanisms of ascorbate–glutathione metabolisms in response to Pb-induced oxidative stress. Proteomic study was performed for control and 1.25 mM Pb-treated plants to examine the root protein dynamics in the presence of Pb. Results of our analysis showed that Pb treatment caused a decrease in non-protein thiols, reduced glutathione (GSH), total ascorbate, total glutathione, GSH/oxidized glutathione (GSSG) ratio, and activities of glutathione reductase and γ-glutamylcysteine synthetase. Conversely, cysteine and GSSG contents and glutathione-S-transferase activity was increased after Pb treatment. Fourier transform infrared spectroscopy confirmed our metabolic and proteomic studies and showed that amino, phenolic, and carboxylic acids as well as alcoholic, amide, and ester-containing biomolecules had key roles in detoxification of Pb/Pb-induced toxic metabolites. Proteomic analysis revealed an increase in relative abundance of 20 major proteins and 3 new proteins (appeared only in 1.25 mM Pb). Abundant proteins during 1.25 mM Pb stress conditions have given a very clear indication about their involvement in root architecture, energy metabolism, reactive oxygen species (ROS) detoxification, cell signaling, primary and secondary metabolisms, and molecular transport systems. Relative accumulation patterns of both common and newly identified proteins are highly correlated with our other morphological, physiological, and biochemical parameters.
Afficher plus [+] Moins [-]Transcript response of soft coral (Scleronephthya gracillimum) on exposure to polycyclic aromatic hydrocarbons Texte intégral
2014
Polycyclic aromatic hydrocarbons (PAHs) are the most persistent organic pollutants in worldwide aquatic environments. The extensive isolation of genes responsive to PAH pollution in soft coral (Scleronephthya gracillimum) is described herein. Soft coral colonies were exposed to 100 μg/L of a standard mixture of PAHs. Gene candidates with transcript levels that changed in response to PAH exposure were identified by differential display polymerase chain reaction (DD-PCR). There were 37 types of candidate genes identified, of which 20 were upregulated in expression and 17 were downregulated. The functions of the genes identified included oxidative stress response, ribosomal structure maintenance, molecular chaperone activity, protein kinase activation and tumorigenesis, defense mechanisms, transcription, and other biological responses. mRNA quantification was carried out using real-time quantitative PCR in eight selected genes: cytosolic malate dehydrogenase, protein disulfide isomerase, ribosomal protein L6, ral guanine nucleotide dissociation stimulator-like 1, poly(ADP-ribose) polymerase 4, peptidylglycine α-hydroxylating monooxygenase, a disintegrin and metalloproteinase (ADAM) metallopeptidase protein, and eukaryotic initiation factor 4 gamma 3. Changes in transcript levels were consistent with DD-PCR results. The gene candidates isolated in this study were differentially expressed and therefore have potential as molecular biomarkers for understanding coral responses to environmental stressors.
Afficher plus [+] Moins [-]Leaching of polycyclic aromatic hydrocarbons from power plant lignite ash—influence of parameters important for environmental pollution Texte intégral
2014
Nikola Tesla B power plant (TENT B), located at the Sava River, in Obrenovac, 50 km west from the Serbian’s capital, Belgrade, is the second largest coal-fired power plant in the country, consisting of two blocks, each of 620 MW capacity. In order to investigate the threat polycyclic aromatic hydrocarbons (PAHs) from deposited coal ash, obtained by coal combustion in this power plant, can represent for the surrounding environment, samples of coal ash were submitted to extraction with river water used for transport of coal ash to the dump, as well as with water of different ionic strength and acidity. It was found that, out of 16 EPA priority PAHs, only naphthalene, acenaphthylene, fluorene, phenantrene, fluoranthene, and pyrene were found in measurable concentrations in the different extracts. Their combined concentration was around 0.1 μg/L, so they do not, in terms of leached concentrations, represent serious danger for the surrounding environment. In all cases of established (and leached) PAH compounds, changes of ionic strength, acidity, or the presence of organic compounds in river water may to some extent influence the leached concentrations. However, under the examined conditions, similar to those present in the environment, leached concentrations were not more than 50 % greater than the concentrations leached by distilled water. Therefore, water desorption is likely the most important mechanism responsible for leaching of PAH compounds from filter coal ash.
Afficher plus [+] Moins [-]The reductive degradation of 1,1,1-trichloroethane by Fe(0) in a soil slurry system Texte intégral
2014
Most studies on the treatment of chlorinated contaminants by Fe(0) focus on aqueous system tests. However, few is known about the effectiveness of these tests for degrading chlorinated contaminants such as 1,1,1-trichloroethane (TCA) in soil. In this work, the reductive degradation performance of 1,1,1-TCA by Fe(0) was thoroughly investigated in a soil slurry system. The effects of various factors including acid-washed iron, the initial 1,1,1-TCA concentration, Fe(0) dosage, slurry pH, and common constituents in groundwater and soil such as Cl⁻, HCO₃⁻, SO₄²⁻, and NO₃⁻anions and humic acid (HA) were evaluated. The experimental results showed that 1,1,1-TCA could be effectively degraded in 12 h for an initial Fe(0) dosage of 10 g L⁻¹and a soil/water mass ratio of 1:5. The soil slurry experiments showed two-stage degradation kinetics: a slow reaction in the first stage and a fast reductive degradation of 1,1,1-TCA in the second stage. The reductive degradation of 1,1,1-TCA was expedited as the mass concentration of Fe(0) increased. In addition, high pHs adversely affected the degradation of 1,1,1-TCA over a pH range of 5.4–8.0 and the reductive degradation efficiency decreased with increasing slurry pH. The initial 1,1,1-TCA concentration and the presence of Cl⁻and SO₄²⁻anions had negligible effects. HCO₃⁻anions had a accelerative effect on 1,1,1-TCA removal, and both NO₃⁻and HA had inhibitory effects. A Cl⁻mass balance showed that the amount of Cl⁻ions released into the soil slurry system during the 1,1,1-TCA degradation increased with increasing reaction time, suggesting that the main degradation mechanism of 1,1,1-TCA by Fe(0) in a soil slurry system was reductive dechlorination with 1,1-DCA as the main intermediate. In conclusion, this study provides a theoretical basis for the practical application of the remediation of contaminated sites containing chlorinated solvent.
Afficher plus [+] Moins [-]Relationship of extinction coefficient, air pollution, and meteorological parameters in an urban area during 2007 to 2009 Texte intégral
2014
Light extinction, which is the extent of attenuation of light signal for every distance traveled by light in the absence of special weather conditions (e.g., fog and rain), can be expressed as the sum of scattering and absorption effects of aerosols. In this paper, diurnal and seasonal variations of the extinction coefficient are investigated for the urban areas of Tehran from 2007 to 2009. Cases of visibility impairment that were concurrent with reports of fog, mist, precipitation, or relative humidity above 90 % are filtered. The mean value and standard deviation of daily extinction are 0.49 and 0.39 km⁻¹, respectively. The average is much higher than that in many other large cities in the world, indicating the rather poor air quality over Tehran. The extinction coefficient shows obvious diurnal variations in each season, with a peak in the morning that is more pronounced in the wintertime. Also, there is a very slight increasing trend in the annual variations of atmospheric extinction coefficient, which suggests that air quality has regressed since 2007. The horizontal extinction coefficient decreased from January to July in each year and then increased between July and December, with the maximum value in the winter. Diurnal variation of extinction is often associated with small values for low relative humidity (RH), but increases significantly at higher RH. Annual correlation analysis shows that there is a positive correlation between the extinction coefficient and RH, CO, PM₁₀, SO₂, and NO₂concentration, while negative correlation exists between the extinction and T, WS, and O₃, implying their unfavorable impact on extinction variation. The extinction budget was derived from multiple regression equations using the regression coefficients. On average, 44 % of the extinction is from suspended particles, 3 % is from air molecules, about 5 % is from NO₂absorption, 0.35 % is from RH, and approximately 48 % is unaccounted for, which may represent errors in the data as well as contribution of other atmospheric constituents omitted from the analysis. Stronger regression equation is achieved in the summer, meaning that the extinction is more predictable in this season using pollutant concentrations.
Afficher plus [+] Moins [-]Fate of para-toluenesulfonamide (p-TSA) in groundwater under anoxic conditions: modelling results from a field site in Berlin (Germany) Texte intégral
2014
This article reports on a field modelling study to investigate the processes controlling the plume evolution of para-toluenesulfonamide (p-TSA) in anoxic groundwater in Berlin, Germany. The organic contaminant p-TSA originates from the industrial production process of plasticisers, pesticides, antiseptics and drugs and is of general environmental concern for urban water management. Previous laboratory studies revealed that p-TSA is degradable under oxic conditions, whereas it appears to behave conservatively in the absence of oxygen (O₂). p-TSA is ubiquitous in the aquatic environment of Berlin and present in high concentrations (up to 38 μg L⁻¹) in an anoxic aquifer downgradient of a former sewage farm, where groundwater is partly used for drinking water production. To obtain refined knowledge of p-TSA transport and degradation in an aquifer at field scale, measurements of p-TSA were carried out at 11 locations (at different depths) between 2005 and 2010. Comparison of chloride (Cl⁻) and p-TSA field data showed that p-TSA has been retarded in the same manner as Cl⁻. To verify the transport behaviour under field conditions, a two-dimensional transport model was setup, applying the dual-domain mass transfer approach in the model sector corresponding to an area of high aquifer heterogeneity. The distribution of Cl⁻and p-TSA concentrations from the site was reproduced well, confirming that both compounds behave conservatively and are subjected to retardation due to back diffusion from water stagnant zones. Predictive simulations showed that without any remediation measures, the groundwater quality near the drinking water well galleries will be affected by high p-TSA loads for about a hundred years.
Afficher plus [+] Moins [-]Controlled synthesis of uniform BiVO4 microcolumns and advanced visible-light-driven photocatalytic activity for the degradation of metronidazole-contained wastewater Texte intégral
2014
Yu, Chongfei | Dong, Shuying | Feng, Jinglan | Sun, Jingyu | Hu, Limin | Li, Yukun | Sun, Jianhui
Well-defined, uniform bismuth vanadate (BiVO₄) microcolumns were synthesized through a refined hydrothermal route. During the fabrication process, a detailed orthogonal design on the synthetic conditions was performed, aiming to optimize the experimental parameters to produce BiVO₄materials (BiVO₄(Opt.)) with the most prominent visible-light-driven photocatalytic efficiency, where the catalytic activities of the synthesized materials were evaluated via the decolorization of methylene blue under visible light irradiation. The BiVO₄(Opt.) were then targetedly produced according to the determined optimal conditions and well characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet and visible diffuse-reflectance spectroscopy and photoluminescence spectroscopy. Compared with the commercial P25-TiO₂photocatalysts, the as-synthesized BiVO₄(Opt.) displayed superior visible-light-driven photocatalytic activities for the degradation of metronidazole-contained wastewater with the presence of H₂O₂. The degradation efficiency of metronidazole reached up to 70 % within 180 min, leading to a brief speculation on the possibly major steps of the visible-light-driven photocatalytic process. The current study provides a distinctive route to design novel shaped BiVO₄architectures with advanced photocatalytic capacities for the treatment of organic pollutants in the aqueous environment.
Afficher plus [+] Moins [-]