Affiner votre recherche
Résultats 181-190 de 7,290
Organic waste-borne ZnS nanoparticles: The forgotten ones Texte intégral
2022
Levard, C. | Le Bars, M. | Formentini, T. | Legros, S. | Doelsch, E. | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Swedish University of Agricultural Sciences = Sveriges lantbruksuniversitet (SLU) | Recyclage et risque (UPR Recyclage et risque) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | ANR-15-CE34-0003,DIGESTATE,Diagnostic des traitements des déchets et comportement des contaminants dans l'environnement(2015)
International audience
Afficher plus [+] Moins [-]Feeding on grains containing pesticide residues is detrimental to offspring development through parental effects in grey partridge Texte intégral
2022
Gaffard, Agathe | Pays, Olivier | Monceau, Karine | Teixeira, Maria | Bretagnolle, Vincent | Moreau, Jérôme | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Biodiversité dans l’Anthropocène - Dynamique, Fonction & Gestion (BIODIVAG) ; Université d'Angers (UA) | Biogéosciences [UMR 6282] (BGS) ; Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) | Écologie Évolutive [UMR 6282 Biogéosciences] (Équipe ECO/EVO) ; Biogéosciences [UMR 6282] (BGS) ; Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) | ANR-19-CE34-0003,PestiStress,Implication des pesticides dans le déclin d'espèces aviaires emblématiques du milieu rural(2019)
International audience | Numerous toxicological studies have shown that ingestion of pesticides can induce physiological stress in breeding birds, with adverse consequences on egg laying parameters and offspring quality through parental effects. However, previous studies do not mimic current levels of pesticide residues in typical landscapes, and they do not consider potential cocktail effects of pesticides as they occur in the wild. Herein, we explored whether realistic pesticide exposure affected reproduction parameters and offspring condition through parental effects in Grey partridge. We fed 24 breeding pairs with either seeds from conventional agriculture crops treated with various pesticides during cropping, or organic grains without pesticide residues as controls. The conventional and organic grain diets mimicked food options potentially encountered by wild birds in the field. The results showed that ingesting low pesticide doses over a long period had consequences on reproduction and offspring quality without altering mortality in parents or chicks. Compared with organic pairs, conventional pairs yielded smaller chicks at hatching that had a lower body mass index at 24 days old. Additionally, these chicks displayed lower haematocrit when body mass index was higher. Therefore, ingestion of conventional grains by parents resulted in chronic exposure to pesticide residues, even at low doses, and this had detrimental consequences on offspring. These results demonstrate a sublethal effect of pesticide residues through parental effects. The consequences of parental exposure on chicks might partly explain the decline in wild Grey partridge populations, which raises questions for avian conservation and demography if current agrosystem approaches are continued
Afficher plus [+] Moins [-]Associations between internal concentrations of fluorinated and organochlorinated chemicals in women and in vitro fertilization outcomes: A multi-pollutant study Texte intégral
2022
Lefebvre, Tiphaine | Fréour, Thomas | Duval, Gauthier | Ploteau, Stéphane | Marchand, Philippe | Le Bizec, Bruno | Antignac, Jean-Philippe | Cano-Sancho, Germán | Centre Hospitalier Universitaire de Nantes = Nantes University Hospital (CHU Nantes) | Laboratoire d'étude des Résidus et Contaminants dans les Aliments (LABERCA) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Team 2 : Cell and gene engineering in tolerance, fertility and regenerative medicine (Team 2 - U1064 Inserm - CR2TI) ; Centre de Recherche en Transplantation et Immunologie - Center for Research in Transplantation and Translational Immunology (U1064 Inserm - CR2TI) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Nantes Université - UFR de Médecine et des Techniques Médicales (Nantes Univ - UFR MEDECINE) ; Nantes Université - pôle Santé ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Nantes Université - UFR de Médecine et des Techniques Médicales (Nantes Univ - UFR MEDECINE) ; Nantes Université - pôle Santé ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ) | Centre de Recherche en Transplantation et Immunologie - Center for Research in Transplantation and Translational Immunology (U1064 Inserm - CR2TI) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Nantes Université - UFR de Médecine et des Techniques Médicales (Nantes Univ - UFR MEDECINE) ; Nantes Université - pôle Santé ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ) | Nantes Université (Nantes Univ)
International audience | The impact of persistent organic pollutants (POPs) on reproductive health is still poorly understood, even though infertility management has high associated societal and economical costs. The aims of this study were to characterize the internal levels of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and perfluoroalkylated substances (PFAS) in women undergoing in vitro fertilization (IVF); and evaluate their association with IVF outcomes, individually and as mixtures in a combined multipollutant approach. Thus, 136 women undergoing IVF treatment at Nantes University Hospital (France) were prospectively recruited between 2019 and 2020. Serum samples were analyzed using liquid chromatography with tandem-mass spectrometry for 14 PFAS. Follicular fluid was analyzed with gas chromatography coupled to high resolution mass spectrometry for 14 PCBs and 25 OCPs. Intermediate and clinical IVF outcomes were ascertained by embryologists and clinicians using standardized protocols. Multivariate Poisson regression models and Bayesian Kernel Machine Regressions (BKMR) were used to identify individual and joint associations between POPs and IVF outcomes adjusting for age, body mass index (BMI) and anti-Müllerian hormone. The results showed that most POPs were widely present in women, and globally not associated with clinically relevant IVF outcomes, like live birth rates. Nonetheless, negative associations between PCB138 and trans-nonachlor with useable blastocysts were identified, β -0.28 (95%CI [-0.52; -0.04] p = 0.02) and β -0.22 (95%CI [-0.40; -0.03] p = 0.02). Conversely, PCB28 showed positive associations with the number of useable blastocysts, pregnancy rate and live birth rate. The BKMR analysis suggested the lack of association of the mixture with intermediate and clinical outcomes. The study supports the need of conducting further studies in a larger population sample in order to ensure sufficient statistical power to identify modest effects and a robust stratification analysis to account for the large underlying disease heterogeneity.
Afficher plus [+] Moins [-]Metabolic, cellular and defense responses to single and co-exposure to carbamazepine and methylmercury in Dreissena polymorpha Texte intégral
2022
Baratange, Clément | Paris-Palacios, Séverine | Bonnard, Isabelle | Delahaut, Laurence | Dominique, Grandjean | Wortham, Laurence | Sayen, Stéphanie | Gallorini, Andrea | Michel, Jean | Renault, D | Breider, Florian | Loizeau, Jean-Luc | Cosio, Claudia | Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO) ; Institut National de l'Environnement Industriel et des Risques (INERIS)-Université de Reims Champagne-Ardenne (URCA)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-SFR Condorcet ; Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) | School of Architecture, Civil and Environmental Engineering (ENAC) ; Ecole Polytechnique Fédérale de Lausanne (EPFL) | Pathologies Pulmonaires et Plasticité Cellulaire - UMR-S 1250 (P3CELL) ; Université de Reims Champagne-Ardenne (URCA)-Institut National de la Santé et de la Recherche Médicale (INSERM) | Institut de Chimie Moléculaire de Reims - UMR 7312 (ICMR) ; Université de Reims Champagne-Ardenne (URCA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-SFR CAP Santé (Champagne-Ardenne Picardie Santé) ; Université de Reims Champagne-Ardenne (URCA)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-SFR Condorcet ; Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) | Université de Genève = University of Geneva (UNIGE) | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Carbamazepine (CBZ) and Hg are widespread and persistent micropollutants in aquatic environments. Both pollutants are known to trigger similar toxicity mechanisms, e.g. reactive oxygen species (ROS) production. Here, their effects were assessed in the zebra mussel Dreissena polymorpha, frequently used as a freshwater model in ecotoxicology and biomonitoring. Single and co-exposures to CBZ (3.9 µg•L-1) and MeHg (280 ng•L-1) were performed for 1 and 7 days. Metabolomics analyses evidenced that the co-exposure was the most disturbing after 7 days, reducing the amount of 25 metabolites involved in protein synthesis, energy metabolism, antioxidant response and osmoregulation, and significantly altering cells and organelles' structure supporting a reduction of functions of gills and digestive glands. CBZ alone after 7 days decreased the amount of α-aminobutyric acid and had a moderate effect on the structure of mitochondria in digestive glands. MeHg alone had no effect on mussels' metabolome, but caused a significant alteration of cells and organelles' structure in gills and digestive glands. Single exposures and the co-exposure increased antioxidant responses vs control in gills and digestive glands, without resulting in lipid peroxidation, suggesting an increased ROS production caused by both pollutants. Data globally supported that a higher number of hyperactive cells compensated cellular alterations in the digestive gland of mussels exposed to CBZ or MeHg alone, while CBZ+MeHg co-exposure overwhelmed this compensation after 7 days. Those effects were unpredictable based on cellular responses to CBZ and MeHg alone, highlighting the need to consider molecular toxicity pathways for a better anticipation of effects of pollutants in biota in complex environmental conditions.
Afficher plus [+] Moins [-]Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: New insights and improvement of previous predictions Texte intégral
2022
Comte, Irina | Pradel, Alice | Crabit, Armand | Mottes, Charles | Pak, Lai Ting | Cattan, Philippe | Fonctionnement écologique et gestion durable des agrosystèmes bananiers et ananas (UR GECO) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Géosciences Rennes (GR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Gestion de l'Eau, Acteurs, Usages (UMR G-EAU) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Bureau de Recherches Géologiques et Minières (BRGM)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Fonctionnement agroécologique et performances des systèmes de cultures horticoles (UPR HORTSYS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Département Environnements et Sociétés (Cirad-ES) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Région Guadeloupe (RIVAGE & GESSICA projets en Guadeloupe) | European Project: ERDF
International audience | Chlordecone (CLD), was widely applied in banana fields in the French West Indies from 1972 to 1993. The WISORCH model was constructed to assess soil contamination by CLD and estimated that it lasts from 100 to 600 years, depending on leaching intensity and assuming no degradation. However, recent studies demonstrated that CLD is degraded in the environment, hence questioning the reliability of previous estimations. This paper shows how to improve the model and provides insights into the long-term dissipation of CLD. In-situ observations were made in nearly 2545 plots between 2001 and 2020, and 17 plots were sampled at two dates. Results of soil analyses showed an unexpected 4-fold decrease in CLD concentrations in the soil, in contrast to simulations made using the first version of WISORCH at the time. Neither erosion, nor CLD leaching explained these discrepancies. In a top-down modeling approach, these new observations of CLD concentrations led us to implement a new dissipation process in the WISORCH model that corresponds to a DT50 dissipation half-life of 5 years. The new version of the improved model allowed us to update the prediction of the persistence of soil pollution, with soil decontamination estimated for the 2070s. This development calls for re-evaluation of soil pollution status. Further validation of the new version of WISORCH is needed so it can contribute to crop management on contaminated soil.
Afficher plus [+] Moins [-]Anthropogenically impacted lake catchments in Denmark reveal low microplastic pollution Texte intégral
2022
Kallenbach, Emilie | Friberg, Nikolai | Lusher, Amy | Jacobsen, Dean | Hurley, Rachel
Microplastics have been detected in lake environments globally, including in remote regions. Agricultural and populated areas are known to congregate several inputs and release pathways for microplastic. This study investigated microplastic (50–5000 µm) contamination in five Danish freshwater lakes with catchments dominated by arable land use. The concentrations in sediments (n = 3/site) and the zebra mussel, Dreissena polymorpha (n = 30/site), were calculated and compared with catchment characteristics and environmental parameters. Microplastic concentrations in sediment were relatively low (average 0.028 ± 0.017 items/g dry weight sediment) whilst only a single microplastic was found in the mussels (average 0.067 ± 0.249 items/10 individual). Hence, no relationship between the number of observed microplastics in sediment and mussels could be identified, nor could a relationship between concentration in sediment and environmental parameters. As all lakes studied received their water from moderate to heavily anthropogenically impacted catchments, it was expected that they would be sinks for microplastic with high bioavailability. Based on the results of the present study, D. polymorpha were found to not be contaminated by microplastics in the five study lakes. Thus, our results suggest that these mussels do not interact with microplastics at low concentrations. We speculate that the results on sediment and biota could be explained by several factors related to regional differences in plastic use, species characteristics, sampling size, and the fact that finding no microplastic is not always reported in the scientific literature. Thus, the paper provides insight into the dynamics between the catchment, lake, and biota in systems with low microplastic concentration. | publishedVersion
Afficher plus [+] Moins [-]A phospho-compost biological-based approach increases phosphate rock agronomic efficiency in faba bean as compared to chemical and physical treatments. Texte intégral
2022
Chtouki, Mohamed | Bargaz, Adnane | Lyamlouli, Karim | Oukarroum, Abdallah | Zeroual, Youssef
peer reviewed | Under arid and semi-arid conditions, direct application of phosphate rock (PR) as a source of phosphorus (P) for crop production is likely influenced by agricultural practices and soil properties. Different approaches could be used to improve the agronomic efficiency of low-grade PR over a wider range of soils and crops. In this study, biological, physical, and chemical treatments of low-grade Moroccan PR were investigated and compared through agronomic trials on faba bean grown under alkaline soil conditions. The physical treatment was based on blending PR with triple superphosphate (TSP) at 75:25 and 50:50 ratios, the biological treatments involved co-application of PR with compost at 50:50 ratio and phospho-compost elaborated from PR (20%), sewage sludge (46%), and wheat residues (34%), while the chemical treatment was obtained by a 30% acidulation of PR by phosphoric acid. Control treatments consisting of zero P application (control), PR alone, and TSP alone were considered to assess the effectiveness of the abovementioned techniques to improve PR agronomic efficiency. A pot experiment was conducted in sandy soil (Jorf Lasfar, central Morocco) for 60 days in a completely randomized design considering eight treatments. All treatments, except the control, were amended with 52 mg kg-1 of P from different PR-based fertilizers before sowing. At the flowering stage (60-day-old plants), results indicated that all PR treatments significantly improved plant growth, root nodulation, and nutrient uptake compared to the control. The relative agronomic efficiency of pretreated PR was significantly higher with phospho-compost treatment (86%) than the partially acidulated PR (78%) or the PR/TSP blend 50:50 (64%). Likewise, P uptake, P use efficiency, number of root nodules, and N uptake all were improved under PR treatments. Our finding revealed that the biological technique based on phospho-compost yielded better compared to chemical and physical treatments.
Afficher plus [+] Moins [-]A phospho-compost biological-based approach increases phosphate rock agronomic efficiency in faba bean as compared to chemical and physical treatments. Texte intégral
2022
Chtouki, Mohamed | Bargaz, Adnane | Lyamlouli, Karim | Oukarroum, Abdallah | Zeroual, Youssef
peer reviewed | Under arid and semi-arid conditions, direct application of phosphate rock (PR) as a source of phosphorus (P) for crop production is likely influenced by agricultural practices and soil properties. Different approaches could be used to improve the agronomic efficiency of low-grade PR over a wider range of soils and crops. In this study, biological, physical, and chemical treatments of low-grade Moroccan PR were investigated and compared through agronomic trials on faba bean grown under alkaline soil conditions. The physical treatment was based on blending PR with triple superphosphate (TSP) at 75:25 and 50:50 ratios, the biological treatments involved co-application of PR with compost at 50:50 ratio and phospho-compost elaborated from PR (20%), sewage sludge (46%), and wheat residues (34%), while the chemical treatment was obtained by a 30% acidulation of PR by phosphoric acid. Control treatments consisting of zero P application (control), PR alone, and TSP alone were considered to assess the effectiveness of the abovementioned techniques to improve PR agronomic efficiency. A pot experiment was conducted in sandy soil (Jorf Lasfar, central Morocco) for 60 days in a completely randomized design considering eight treatments. All treatments, except the control, were amended with 52 mg kg-1 of P from different PR-based fertilizers before sowing. At the flowering stage (60-day-old plants), results indicated that all PR treatments significantly improved plant growth, root nodulation, and nutrient uptake compared to the control. The relative agronomic efficiency of pretreated PR was significantly higher with phospho-compost treatment (86%) than the partially acidulated PR (78%) or the PR/TSP blend 50:50 (64%). Likewise, P uptake, P use efficiency, number of root nodules, and N uptake all were improved under PR treatments. Our finding revealed that the biological technique based on phospho-compost yielded better compared to chemical and physical treatments.
Afficher plus [+] Moins [-]Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Texte intégral
2022
Panico, Speranza, C | van Gestel, Cornelis, a M | Verweij, Rudo, A | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos, A | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pélosi, Céline | Vrije Universiteit Brussel (VUB) | University of Naples Federico II = Università degli studi di Napoli Federico II | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This study was performed within the framework of the “PING” research project, funded by the M´etaprogramme INRAe SMaCH Call2017. The study also benefited from results obtained during the “RESCAPE” research project, action led by the Ministry for Agricultureand Food and the Ministry for an Ecological and Solidary Transition, with the financial support of the French Biodiversity Agency on“Resistance and Pesticides” research call, with the fees for diffuse pollution coming from the Ecophyto Plan through the national agencyONEMA.
International audience | Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg − 1 , respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broadspectrum fungicides mostly from the azole family. A risk quotient (RQ i) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic "cocktail effects". ☆ This paper has been recommended for acceptance by Montes Marques.
Afficher plus [+] Moins [-]Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Texte intégral
2022
Panico, Speranza, C | van Gestel, Cornelis, a M | Verweij, Rudo, A | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos, A | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pélosi, Céline | Vrije Universiteit Brussel [Bruxelles] (VUB) | University of Naples Federico II = Università degli studi di Napoli Federico II | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This study was performed within the framework of the “PING” research project, funded by the M´etaprogramme INRAe SMaCH Call2017. The study also benefited from results obtained during the “RESCAPE” research project, action led by the Ministry for Agricultureand Food and the Ministry for an Ecological and Solidary Transition, with the financial support of the French Biodiversity Agency on“Resistance and Pesticides” research call, with the fees for diffuse pollution coming from the Ecophyto Plan through the national agencyONEMA.
International audience | Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg − 1 , respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broadspectrum fungicides mostly from the azole family. A risk quotient (RQ i) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic "cocktail effects". ☆ This paper has been recommended for acceptance by Montes Marques.
Afficher plus [+] Moins [-]