Affiner votre recherche
Résultats 1801-1810 de 3,991
Removal and Recovery of Cr(VI) from Industrial Plating Wastewater Using Fibrous Anion Exchanger
2016
Lee, Chang-Gu | Park, Jeong-Ann | Choi, Jae-Woo | Ko, Seok-Oh | Yi, Sang-hyŏp
The aim of this study was to investigate the removal and recovery of hexavalent chromium (Cr(VI)) from industrial plating wastewater using anion exchanger Kanecaron SA fibers in batch systems. The surface morphology and physicochemical properties of the fiber were analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), and Fourier transform infrared spectroscopy (FT-IR). The removal efficiency was affected by the solution pH and showed a plateau formation decreasing on both sides of pH 4. The Cr(VI) uptake on Kanecaron SA fibers was rapidly increased in the first 10 min, and the kinetic data fit well to the Elovich model. Isotherm model analysis demonstrates that the Redlich-Peterson model suitably describes the equilibrium data, and the maximum adsorption capacity (Q ₘ) from the Langmuir model was 87.366 mg/g for Cr(VI) in distilled water, 117.977 mg/g for total Cr, and 57.101 mg/g for Cr(VI) in wastewater. Additionally, the Cr(III) contained in the plating wastewater was removed by the Kanecaron SA fibers, while the other heavy metals were not removed. Thermodynamic analysis indicates that Cr(VI) adsorption to Kanecaron SA fibers decreased with increasing temperature from 10 to 50 °C, indicating the spontaneous and exothermic nature of the sorption process. The removal efficiency was maintained above 80 % during four regeneration cycles.
Afficher plus [+] Moins [-]Modeling the Risk of the Salt for Polluting Groundwater Irrigation with Recycled Water and Ground Water Using HYDRUS-1 D
2016
Shang, Fangze | Ren, Shumei | Yang, Peiling | Li, Changsheng | Xue, Yandong | Huang, Lingmiao
Long-term irrigation with recycled water (RW) that contains high salt may pollute groundwater. The HYDRUS-1D model was texted against soil water content and electrical conductivity (ECe) observed in a summer maize and winter wheat rotational field irrigated with ground water (GW) and RW; then, the risk for polluting groundwater in two regions of Beijing was evaluated. The comparisons indicated that the simulated soil water content and ECe values were generally in agreement with the field observations, indicating the reliability of HYDRUS-1D in soils irrigated with GW and RW. The regional prediction results of the proposed simulation model indicated that the average soil ECe at the bottom of vadose zones ranged from 0.400 to 0.896 dS m⁻¹, and the values in the Tongzhou and Daxing Districts irrigated with RW were 1.40 and 1.09 times, respectively, higher than that irrigated with GW over the next 50 years. Five risk indicators represent salt transporting time and values were used. The results of the proposed evaluation model showed that the risk scores ranged from 3.04 to 9.32. In the Tongzhou and Daxing Districts, the risk scores of RW irrigation for polluting groundwater were 1.06 and 1.08 times, respectively, higher than that GW irrigation. The risk scores of GW or RW irrigation for polluting groundwater in the Tongzhou District were 1.75 or 1.72 times, respectively, higher than that in the Daxing District. Considering the small risk difference between GW and RW irrigations, RW can be used in both regions. Due to the different vadose zone structures, the Daxing District is more suitable for RW irrigation. The long-term use of RW for irrigation should consider the salt content of RW and vadose zone structure.
Afficher plus [+] Moins [-]Impact of a long-term fire retardant (Fire Trol 931) on the leaching of Ca, Mg, and K from a Mediterranean forest loamy soil
2016
Michalopoulos, Charalampos | Koufopoulou, Sofia | Tzamtzis, Nikolaos | Pappa, Athina
The present laboratory study was conducted in pot soil taken from forest. The leaching of calcium (Ca), magnesium (Mg), and potassium (K) (plant macronutrients) due to the application of a nitrogen phosphate-based long-term fire retardant (LTFR) (Fire Trol 931) was investigated. The concentrations of Ca²⁺, Mg²⁺, and K⁺ were measured in the resulting leachates from pots with forest soil and pine tree alone and in combination with fire. Magnesium is a minor component of Fire Trol 931. The leaching of Ca²⁺, Mg²⁺, and K⁺ from treated soils with the retardant pots was significantly greater than that from control pots. The leaching of Mg²⁺ was found to be of small percentage of the initially applied Mg quantities. Fire Trol 931 application resulted in the leaching of Ca²⁺, Mg²⁺, and K⁺ from a typical Mediterranean forest soil in pots, following the application of simulated annual precipitation probably due to ammonium (one of the major retardant components) soil deposition that mobilizes base cations from the soil. It seems that LTFR application may result in chemical leaching from the soil to the drainage water.
Afficher plus [+] Moins [-]Effect of tourmaline on denitrification characteristics of hydrogenotrophic bacteria
2016
Wang, Wei | Jiang, Hongyan | Zhu, Guangquan | Song, Xueying | Liu, Xingyu | Qiao, Ya
To improve the denitrification characteristics of anaerobic denitrifying bacteria and obviate the disadvantage of use of explosive hydrogen gas, tourmaline, a polar mineral, was added to the hydrogenotrophic denitrification system in this study. Microbial reduction of nitrate in the presence of tourmaline was evaluated to assess the promotion effect of tourmaline on nitrate biodegradation. The experiment results demonstrated that tourmaline speeded up the cultivation process of bacteria from 65 to 36 days. After domestication of the bacteria, nitrate (50 mg NO₃ ⁻–N L⁻¹) was completely removed within 3 days in the combined tourmaline–bacteria system, and the generated nitrite was also removed within 8 days. The reduction rate in this system is higher relative to that in the bacteria system alone. Efficient removal of nitrate by tourmaline-supported anaerobic bacteria (without external hydrogen input) indicated that tourmaline might act as the sole hydrogen donor to sustain autotrophic denitrification. Besides the production of hydrogen, the promoted activity of anaerobic denitrifying bacteria might be caused by the change of water properties, e.g., the pH of aqueous solutions was altered to about 8.0 and the oxidation–reduction potential decreased by 62 % in the tourmaline system. The distinctive effects of tourmaline on bacteria were related to its electric properties.
Afficher plus [+] Moins [-]Exploring Arsenic Adsorption at low Concentration onto Modified Leonardite
2016
Solé-Sardans, Montserrat | Gamisans, Xavier | Dorado, Antonio David | Lao-Luque, Conxita
The removal of As(V) from aqueous solutions by leonardite loaded with ferric ions (Fe-leonardite) has been investigated. The influence of pH, contact time, and arsenate concentration on the adsorption process were evaluated. Batch kinetic studies showed that equilibrium time was reached at 24 h of contact time. Equilibrium data obtained with low initial arsenate concentrations (10–400 ppb) were fitted to both Langmuir and Freundlich models, and the maximum adsorption capacity was estimated to be 322 μg g⁻¹. Arsenic sorption was evaluated in continuous mode to reproduce industrial applications and to determine the conditions where the process was controlled by either mass transfer or reaction rate. A maximum sorption capacity of 905 μg g⁻¹ was obtained in continuous experiments. These results indicate that Fe-leonardite is a great potential material for removing arsenate at low initial concentrations from contaminated water.
Afficher plus [+] Moins [-]Impact of Precipitation Intensity and Riparian Geomorphic Characteristics on Greenhouse Gas Emissions at the Soil-Atmosphere Interface in a Water-Limited Riparian Zone
2016
Vidon, P. | Marchese, S. | Welsh, M. | McMillan, S.
As concentrations of greenhouse gases (GHG: N₂O, CO₂, CH₄) continue to increase in the earth’s atmosphere, there is a need to further quantify the contribution of natural systems to atmospheric GHG concentrations. Within this context, characterizing GHG contributions of riparian zones following storms events is especially important. This study documents soil GHG effluxes in a North Carolina riparian zone in the days following both a natural 2.5-cm precipitation event, and that same event associated with the addition of 8.7 cm artificial rainwater in select static chambers. No significant differences in CO₂, CH₄, and N₂O fluxes in response to increased moisture were observed between a depression, a sand bar, and an upland forested area. However, in this water-limited riparian zone, less negative CH₄ fluxes (i.e., methane oxidation decreased) and higher CO₂ fluxes (i.e., aerobic respiration increased) were observed following precipitation. A short-term burst in N₂O emission was observed in the hours after precipitation occurred, but elevated N₂O emissions did not persist long enough to turn the site from the N₂O sink to a N₂O source in the 3 days following the beginning of the experiment. Our results are in contrast with riparian GHG studies in wetter environments and illustrate the importance of water limitation in regulating riparian soil response to precipitation with respect to GHG emissions. More studies should be conducted in water-limited environments (e.g., US southeast/southwest) before management strategies commonly applied in wetter environments (e.g., US Northeast/Midwest) are applied in these regions.
Afficher plus [+] Moins [-]Anomalous Increase in Winter Temperature and Decline in Forest Growth Associated with Severe Winter Smog in the Ulan Bator Basin
2016
Hauck, Markus | Dulamsuren, Choimaa | Leuschner, Christoph
A dramatic increase in winter (December–February) temperature by 7.2 K (1.1 K per decade) since 1950 has occurred in the Ulan Bator basin, Mongolia. This increase in temperature strongly exceeds the global average of late twentieth century warming and even exceeds warming in most of the polar regions with pronounced increases in temperature. The exceptional warming is restricted to Ulan Bator within the Mongolian forest-steppe region and to wintertime. This suggests that the observed warming could result from radiative forcing by black carbon aerosols. In winter, Ulan Bator’s air is heavily polluted by particulate matter, including black carbon, originating from the combustion of low-quality fuel at low temperature. Winter smog has strongly increased in recent decades, concomitant to the increase in winter temperature, as the result of a strong increase in the city’s population. Exponential growth of Ulan Bator’s population started in the mid-twentieth century, but since 1990, altered socioeconomic frame conditions and a warming climate have driven more than 700,000 pastoralists from rural Mongolia to Ulan Bator where people live in provisional dwellings and cause Ulan Bator’s heavy air pollution. Tree-ring analysis from larch trees growing at the edge of the Ulan Bator basin shows negative correlation of stem increment with December temperature. This result suggests that milder winters promote herbivores and, thus, reduce the tree’s productivity. The negative impact of winter warming on the larch forests adds to adverse effects of summer drought and the impact of high sulfur dioxide emissions. Winter warming putatively associated with high atmospheric concentrations of black carbon aerosols in the Ulan Bator basin is an interesting example of a case where greenhouse gas-mediated climate warming in an area where people themselves hardly contribute to global greenhouse gas emissions affects both humans and ecosystems and causes additional local climate warming.
Afficher plus [+] Moins [-]Biosurfactant Production by Marine-Originated Bacteria Bacillus Subtilis and Its Application for Crude Oil Removal
2016
Zhu, Zhiwen | Zhang, Baiyu | Chen, Bing | Cai, Qinghong | Lin, Weiyun
Biosurfactants have been considered as promising candidates for oil spill cleanup as they are generally more biodegradable, less toxic, and better in enhancing biodegradation than chemical surfactants. This study targeted the marine microbial biosurfactants to examine their enhanced production methods and application for the removal of crude oil from soil. The biosurfactants generated by Bacillus subtilis, which was isolated from the Atlantic Ocean, were investigated in this study. The economic production medium using different carbon (n-hexadecane, diesel oil, glycerol, glucose, starch, and sucrose) and nitrogen sources (NaNO₃, (NH₄)₂SO₄, and yeast extract) was studied. The best performance of biosurfactant production was achieved when using glycerol as carbon source and sodium nitrate and yeast extract as nitrogen sources in the substrate. The production rate was enhanced five times compared with that of the original screening recipe. The fermentative production of the generated biosurfactants could reduce the surface tension of water to 27 mN/m and with strong surface activity (∼36.4 mN/m) even after dilution for 10 times. The critical micellar concentration (CMC) of the product was 507 mg/L. A thin layer chromatography (TLC) analysis indicated that the purified product was a mixture of lipopeptide and glycolipid. The microbially produced biosurfactants were further examined as a soil-washing agent to enhance crude oil removal in a soil column system. The removal rates of 58 and 65 % were achieved using the biosurfactant solution with concentrations of 4 and 8 g/L, respectively. The results demonstrated the potential of marine microbial biosurfactants in cleaning crude oil-contaminated soil.
Afficher plus [+] Moins [-]Removal of elemental mercury by TiO2doped with WO3 and V2O5 for their photo- and thermo-catalytic removal mechanisms
2016
Shen, Huazhen | Ie, Iau-Ren | Yuan, Chung-Shin | Hung, Chung-Hsuang | Chen, Wei-Hsiang
The catalytic removal of Hg⁰ was investigated to ascertain whether the catalysts could simultaneously possess both thermo- and photo-catalytic reactivity. The immobilized V₂O₅/TiO₂ and WO₃/TiO₂ catalysts were synthesized by sol-gel method and then coated on the surface of glass beads for catalytic removal of Hg⁰. They were also characterized by SEM, BET, XRD, UV-visible, and XPS analysis, and their catalytic reactivity was tested under 100–160 °C under the near-UV irradiation. The results indicated that V₂O₅/TiO₂ solely possessed the thermo-catalytic reactivity while WO₃/TiO₂ only had photo-catalytic reactivity. Although the synthesis catalytic reactivity has not been found for these catalysts up to date, but compared with TiO₂, the removal efficiencies of Hg⁰ at 140 and 160 °C were enhanced; particularly, the efficiency was improved from 20 % at 160 °C by TiO₂ to nearly 90 % by WO₃/TiO₂ under the same operating conditions. The effects of doping amount of V₂O₅ and WO₃ were also investigated, and the results showed that 10 % V₂O₅ and 5 % WO₃/TiO₂ were the best immobilized catalysts for thermo- and photo-catalytic reactivity, respectively. The effect of different influent concentrations of Hg⁰ was demonstrated that the highest concentration of Hg⁰ led to the best removal efficiencies for V₂O₅/TiO₂ and WO₃/TiO₂ at 140 and 160 °C, because high Hg⁰ concentration increased the mass transfer rate of Hg⁰ toward the surface of catalysts and drove the reaction to proceed. At last, the effect of single gas component on the removal of Hg⁰ was also investigated.
Afficher plus [+] Moins [-]Potential for Reducing On-Farm Greenhouse Gas and Ammonia Emissions from Dairy Cows with Prolonged Dietary Tannin Additions
2016
Duval, Benjamin D. | Aguerre, Matias | Wattiaux, Michel | Vadas, Peter A. | Powell, J Mark
Dairy cows are responsible for significant emissions of enteric methane (CH₄) and produce nitrous oxide (N₂O) and ammonia (NH₃) gas from manure. As an abatement strategy, we explored the effects of long-term condensed tannin (Quebracho and chestnut extracts) addition to dairy cow diets. Previous studies have demonstrated that tannins in cow diets reduce methane and ammonia efflux, but none have done so over a >1-month time period. A modified stanchion barn equipped with gas analysis instrumentation measured CH₄, N₂O, and NH₃ fluxes into and from the barn, at the onset of the experiment, and 45 and 90 days after feeding groups of lactating dairy cows a control diet or two levels of tannin extract at 0.45 and 1.8 % of dietary dry matter. Few statistical differences among treatments were observed, likely a consequence of high variability and low sample size necessary for conducting a study of this duration. However, on a per-cow basis, low and high tannin diets lowered CH₄ emissions by 56 g cow⁻¹ day⁻¹ and by 48 g cow day⁻¹, respectively. Diet tannin additions lowered CH₄ (33 %), NH₃ (23 %), and N₂O (70 %) per unit milk corrected emissions in the high tannin treatment compared to the control at the end of the experiment, without significant loss in milk production. These results suggest that relatively low concentrations of diet tannin additions can reduce ruminant CH₄ and gaseous N emissions from manure. The tannin effect observed after 90 days is a starting point for considering tannin additions as a potential long-term strategy for improving the environmental footprint of milk production.
Afficher plus [+] Moins [-]