Affiner votre recherche
Résultats 1861-1870 de 6,473
Factor diagnosis and future governance of dangerous goods accidents in China’s ports
2020
Chen, Jihong | Zheng, Huiying | Wei, Ling | Wan, Zheng | Ren, Ruisi | Li, Jie | Li, Haoqiang | Bian, Wentao | Gao, Manjia | Bai, Yun
Dangerous goods are particularly hazardous, as they can be flammable, explosive, and toxic. These characteristics make them vulnerable to accidents, and such mishaps during port operations can lead to massive economic losses and even deaths. It is, therefore, necessary and important to analyze and study the dangerous goods accidents at ports, so as to identify major factors and prevent them. Formal concept analysis (FCA) is a powerful tool for rule extraction. This paper introduces FCA along with relevant documents and case studies to analyze the dangerous goods accidents at China’s ports, building a concept lattice model of dangerous goods accidents at China’s ports, and reduces the condition attributes to come up with three key attributes of dangerous goods accidents at China’s ports: warehousing management, facilities and equipment, goods registration and extract four effective diagnostic rules for dangerous goods accidents at ports. This paper proposes corresponding governance strategies to the rules of dangerous goods accidents, which can significantly prevent and manage dangerous goods accidents at China’s ports in the future. In the future, the concept scale can be introduced to study the problem that the influencing factor is multi-valued attribute so as to expand the scope of research.
Afficher plus [+] Moins [-]Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants
2020
Wang, Yaofeng | Zhang, Kun | Lü, Lun | Xiao Xin, | Chen, Baoliang
The effects and mechanisms of biochars with different silicon (Si) contents on Cadmium (Cd) uptake, translocation and accumulation in rice plants are not fully understood. Herein, we report a pot study to disentangle the interaction mechanisms of Si-rich biochars (Sichar RH300, RH700) and Si-deficient biochars (WB300, WB700) with high-Si soil (HSS) and low-Si soil (LSS) on Cadmium (Cd) and Si accumulation in rice (including grains, straw, and roots). Sichar was found to be better than Si-deficient biochars in reducing Cd uptake and accumulation in rice, and RH300 amendment was better than the RH700 treatment. The surface complexation of Cd with carboxyl groups and Si from biochar led Cd immobilization in soil, as portrayed by Fourier transformed infrared spectroscopy and X-ray photoelectron spectroscopy. The high Si content of biochars indicates a relatively lower bioaccumulation factor and translocation factor of Cd. The Sichar (e.g., RH300) treatment significantly increases the silicon concentration in rice (including grains, straw, and roots), but the Si concentrations of rice grains and roots decrease with WB700-amended LSS. Negative correlations between the concentrations of rice Si and Cd were observed, which could be related to lower expression as observed by Si transport genes (Lsi1 and Lsi3) in rice by Sichar amendment. These findings suggest that the Si released from Sichars can reduce the gene expression of Si transport channel of rice roots and inhibit the transport channel of Si, thus thereby inhibiting the Cd uptake, probably due to the utilization of same channel for Cd and Si. Integrative mechanisms of Sichar (RH300 and RH700) reduced Cd plant accumulation can be proposed by soil immobilization, inhibition of root transport, and prevention of plant translocation.
Afficher plus [+] Moins [-]Mechanochemical degradation of perfluorohexane sulfonate: Synergistic effect of ferrate(VI) and zero-valent iron
2020
Deng, Shanshan | Bao, Yixiang | Cagnetta, Giovanni | Huang, Jun | Yu, Gang
Perfluorohexane sulfonate (PFHxS) has been newly recommended to be added into the Stockholm Convention on persistent organic pollutants (POPs). As one of the major perfluoroalkyl pollutants, its long half-time in human serum and neurotoxicity are cause for significant concern. Although mechanochemical degradation has been evaluated as a promising ecofriendly technology to treat pollutants, the extraordinary stability of poly- and perfluoroalkyl substances (PFASs) raises harsh requirements for co-milling reagents. In the present study, zero-valent iron (ZVI) and ferrate(VI) were for the first time used as the co-milling reagents to degrade PFHxS. When ZVI and ferrate(VI) were used alone, both the degradation and defluorination efficiencies were low. However, after milling at the optimum ratio (ferrate(VI):ZVI = 1:2) for 4 h, the synergistic effect of ZVI and ferrate(VI) resulted in almost complete degradation (100%) and defluorination (95%). Two points can account for this excellent performance: (1) the mechanochemical energy input in the system initiates and prominently promotes related reactions; and (2) the active species generated from the reactions among ZVI, ferrate(VI) and other high-valent iron species will accelerate the process of electron transfer. The sulfonate group comprises the favorable attack sites, as corroborated by both the identified intermediates and quantum chemical calculations. The homolysis of the C–S bond is not only the triggering step, but also the rate-limiting step. In summary, the present work confirms the feasibility and underlying mechanism of the ZVI–ferrate(VI) co-milling system to defluorinate PFHxS, which might be a promising technology to treat PFASs in solid wastes.
Afficher plus [+] Moins [-]The influence of wetting-drying alternation on methylmercury degradation in Guangzhou soil
2020
Xie, Mengying | Zhang, Caixiang | Liao, Xiaoping | Huang, Changsheng
In one of our previous studies, the mechanisms of radical-initiated methylmercury (MeHg) degradation in soil with coexisting Fe and Cu have been reported. In this work, various environmental factors, including water table fluctuation, pH and major ions, are discussed to clarify the behavior of MeHg in subsurface environments. Soil column experiments were set up to simulate the degradation of MeHg in the soil with an iron-bearing mineral (annite), which has often undergone repeating wetting-drying cycles, resulting from the local climate. The results indicate that wetting-drying alternation can initiate MeHg degradation in the soil with the annite mineral. Additionally, the majority of the major ions (K⁺, Na⁺, Mg²⁺, Fe³⁺, Cl⁻, SO₄²⁻, NO₃⁻) in the interstitial soil had little effect in the degradation of MeHg with the exception of Cu, which improved the degradation depending on the pH. At acidic pHs Cu increased the production of hydroxyl radical while at more alkaline pHs there was oxidation to Cu(III). The products including Hg(II) and Hg(0) of MeHg degradation were also identified in this work. This study reveals that the geochemical cycle of MeHg is closely linked to local climate and pedosphere processes.
Afficher plus [+] Moins [-]Sertraline inhibits top-down forces (predation) in microbial food web and promotes nitrification in sediment
2020
Li, Yi | Miao, Yuanyuan | Zhang, Wenlong | Yang, Nan | Niu, Lihua | Zhang, Huanjun | Wang, Longfei
Sertraline is a widely used antidepressant that becomes an aquatic pollutant through metabolic excretion and improper disposal. Determining the impact of sertraline on benthic microbial ecosystems is important for the transformation of river biogenic elements. However, the molecular initiating event induced by sertraline is more readily observed at higher levels, such as the individual or population level of larger organisms, and the effect is not pronounced in benthic organisms, which are directly involved in nitrogen transformation. Therefore, this study used DNA metabarcoding to analyze the effect of sertraline on the microbial ecosystem and material cycles in river sediment through the lens of a microbial food web. The presence of sertraline in the river sediment enhanced the mineralization capacity of nitrogen and increased the accumulation of nitrate in the sediment. Sertraline affected the structure of the microbial food web by stimulating different successions of bacteria and eukaryotes. A structural equation model revealed that sertraline affected the microbial food web model through top-down forces (predation) by reducing the trophic transfer efficiency from metazoans to protozoans. This effect resulted in decreases in the trophic transfer efficiency from protozoans to bacteria and increases in nitrogen mineralization capacity. This was followed by a gradual increase in the nitrification reaction under the action of nitrifying bacteria, increasing the threat to the ecological health of rivers. The results show that sertraline affects the material cycle of river ecosystems and emphasizes that the assessment of the ecological risks of sertraline needs to be considered from the perspective of the material cycle of ecosystems.
Afficher plus [+] Moins [-]Profiling epigenetic changes in human cell line induced by atrazine exposure
2020
Sánchez, Oscar F. | Lin, Li | Bryan, Chris J. | Xie, Junkai | Freeman, Jennifer L. | Yuan, Chongli
How environmental chemicals can affect and exert their toxic effect at a molecular level has gained significant interest in recent years, not only for understanding their immediate health implications over exposed individuals, but also for their subsequent progeny. Atrazine (ATZ) is a commonly used herbicide in the U.S. and a long-suspected endocrine disrupting chemical. The molecular mechanism conferring long-term adverse health outcomes, however, remain elusive. Here, we explored changes in epigenetic marks that arise after exposure to ATZ at selected doses using image-based analysis coupled with data clustering. Significant decreases in methylated CpG (ᵐᵉCpG) and histone 3 lysine 9 tri-methylated (H3K9me3) were observed in the selected human cell line with a clear spatial preference. Treating cells with ATZ leads to the loss of a subpopulation of cells with high ᵐᵉCpG levels as identified in our clustering and histogram analysis. A similar trend was observed in H3K9me3 potentially attributing to the cross-talking between ᵐᵉCpG and H3K9me3. Changes in ᵐᵉCpG are likely to be associated with alterations in epigenetic enzyme expression levels regulating ᵐᵉCpG and persist after the removal of ATZ source which collectively provide a plausible mechanism for long-term ATZ-induced toxicity.
Afficher plus [+] Moins [-]Interaction and coexistence characteristics of dissolved organic matter with toxic metals and pesticides in shallow groundwater
2020
He, Xiao-Song | Zhang, Ya-Li | Liu, Zhen-Hai | Wei, Dan | Liang, Gang | Liu, Hong-Tao | Xi, Bei-Dou | Huang, Zhan-Bin | Ma, Yan | Xing, Bao-Shan
The long-term and large-scale utilization of fertilizers and pesticides in facility agriculture leads to groundwater pollution. However, the coexistence and interactions between organic fertilizers (i.e., organic matter), toxic metals, and pesticides in shallow groundwater have seldom been studied. Thus, the study sought to characterize said interactions via fluorescence, ultraviolet–visible spectroscopy (UV–Vis), and Fourier-transform infrared spectroscopy coupled with two-dimensional correlation spectroscopy and chemometric techniques. The results indicated that groundwater DOM was comprised of protein-, polysaccharide-, and lignin-like substances derived from organic fertilizers. Protein-like substances accounted for the binding of Co, Ni, and Fe, while polysaccharide- and lignin-like substances were mainly responsible for Cr and Mo complexation. Moreover, lignin- and polysaccharide-like substances played a key role in the binding of pesticides (i.e., dichlorodiphenyltrichloroethane [DDT], endosulfan, γ-hexachlorocyclohexane [γ-HCH], monocrotophos, chlorpyrifos, and chlorfenvinphos), rendering the conversion of γ-HCH to β-hexachlorocyclohexane (β-HCH) and the degradation of DDT to dichlorobenzene dichloroethylene (DDE) ineffective. However, the presence of protein-like substances in groundwater benefited the degradation and conversion of γ-HCH and α-endosulfan. Redundancy analyses showed that lignin- and polysaccharide-like matter had the most impacts on the coexistence of DOM with toxic metals and pesticides.
Afficher plus [+] Moins [-]Remediation by waste marble powder and lime of jarosite-rich sediments from Portman Bay (Spain)
2020
Benavente, David | Pla, Concepcion | Valdes-Abellan, Javier | Cremades-Alted, Silvia
We investigate the use of hydrated lime and calcite waste marble powder as remediation treatments of contaminated jarosite-rich sediments from Portman Bay (SE, Spain), one of the most contaminated points in the Mediterranean coast by mining-metallurgical activities. We tested two commercial hydrated limes with different Ca(OH)₂ percentages (28 and 60% for Lime-1 and Lime-2 respectively) and two different waste marble powder, WMP, from the marble industry (60 and 96% of calcite for WMP-1 and WMP-2 respectively). Mixture and column experiments and modelling of geochemical reactions using PHREEQC were performed. Lime caused the precipitation of hematite, gypsum and calcite, whereas WMP treatments formed iron carbonates and hematite. The fraction of amorphous phases was mainly composed of iron oxides, hydroxides and oxyhydroxides that was notably higher in the lime treatment in comparison to the WMP treatment. The reactive surface area showed a positive trend with the amorphous phase concentration. Results highlighted the effectiveness of lime treatments, where Lime-2 showed a complete elimination of jarosite. Column experiments revealed a clear reduction of heavy metal concentration in the lixiviate for the treated sediments compared to the original sediments. Particularly, Lime-2 showed the highest reduction in the peak concentration of Fe, Mn, Zn and Cd. The studied treatments limited the stabilisation of Cr and Ni, whereas contrarily As increases in the treated sediment. PHREEQC calculations showed that the most concentrated heavy metals (Zn and Mn) are stabilized mainly by precipitation whereas Cu, Pb and Cd by a combination of precipitation and sorption processes. This chemical environment leads to the precipitation of stable iron phases, which sorb and co-precipitate considerable amounts of potentially toxic elements. Lime is significantly more effective than WMP, although it is recommended that the pH value of the mixture should remain below 9 due to the amphoteric behaviour of heavy metals.
Afficher plus [+] Moins [-]An untargeted metabolomic approach for the putative characterization of metabolites from Scenedesmus obliquus in response to cadmium stress
2020
Mangal, V. | Nguyen, T.Q. | Fiering, Q. | Guéguen, C.
Cadmium (Cd) is a widespread contaminant in aquatic systems and has a variety of toxicological implications on freshwater microorganisms. In this study, the green algae Scenedesmus obliquus was exposed to increasing Cd concentrations that inhibited growth by 20% (12.6 μmol L⁻¹), 30% (39.8 μmol L⁻¹) and 40% (83.2 μmol L⁻¹) and the metabolite profiles of released and cellular biomolecules were explored using an untargeted direct infusion high resolution Fourier transform ion cyclotron resonance mass spectrometry approach. In Cd untreated cultures, intrinsic differences in composition existed between released biomolecules and freeze-dried cells. Based on putatively characterized compound groups, a greater proportion of Cys-GSH isomers and carboxyamides were present in exudates whereas sugar isomers and phosphonic acids comprised most cellular metabolites. In cultures exposed to 83.2 μmol L⁻¹ Cd, an overall shift in metabolomic response across both released biomolecules and cellular components resulted in an increase of lipid-based esters, and Cys-GSH isomers. These two important metabolites are used in antioxidant defense mechanisms and reactive oxygen species prevention during cellular stress. The diversity of metabolites also decreased as Cd concentrations increased when compared to untreated cultures, suggesting that overall metabolites specialize upon metal stress. We show systemic shifts from sugar and carboxylic isomers to specialized proteins and lipid isomers to help S. obliquus cope with stress. These findings highlight the potential use of this green algae as a potential biosorbent and sheds light into the metabolomics of Cd toxicology and insights into microbial metal adaptation.
Afficher plus [+] Moins [-]Deep-amplicon sequencing (DAS) analysis to determine the presence of pathogenic Helicobacter species in wastewater reused for irrigation
2020
Hortelano, Irene | Moreno Koch, Yolanda | Moreno-Mesonero, Laura | Ferrús, María Antonia
Wastewater has become one of the most important and least expensive water for the agriculture sector, as well as an alternative to the overexploitation of water resources. However, inappropriate treatment before its reuse can result in a negative impact on the environment, such as the presence of pathogens. This poses an increased risk for environmental safety, which can subsequently lead to an increased risk for human health. Among all the emerging wastewater pathogens, bacteria of the genus Helicobacter are some of the most disturbing ones, since they are directly related to gastric illness and hepatobiliary and gastric cancer. Therefore, the aim of this study was to determine the presence of potentially pathogenic Helicobacter spp. in treated wastewater intended for irrigation. We used a next generation sequencing approach, based on Illumina sequencing in combination with culture and other molecular techniques (qPCR, FISH and DVC-FISH), to analyze 16 wastewater samples, with and without an enrichment step. By culture, one of the direct samples was positive for H. pylori. FISH and DVC-FISH techniques allowed for detecting viable Helicobacter spp., including H. pylori, in seven out of eight samples of wastewater from the tertiary effluents, while qPCR analysis yielded only three positive results. When wastewater microbiome was analyzed, Helicobacter genus was detected in 7 samples. The different molecular techniques used in the present study provided evidence, for the first time, of the presence of species belonging to the genus Helicobacter such as H. pylori, H. hepaticus, H. pullorum and H. suis in wastewater samples, even after disinfection treatment.
Afficher plus [+] Moins [-]