Affiner votre recherche
Résultats 1891-1900 de 4,033
Analysis of long-term performance and microbial community structure in bio-cathode microbial desalination cells
2016
Zhang, Huichao | Wen, Qinxue | An, Zhongyi | Chen, Zhiqiang | Nan, Jun
A microbial desalination cell (MDC) could desalinate salt water without energy consumption and simultaneously generate bioenergy. Compared with an abiotic cathode MDC, an aerobic bio-cathode MDC is more sustainable and is less expensive to operate. In this study, the long-term operation (5500 h) performance of a bio-cathode MDC was investigated in which the power density, Coulombic efficiency, and salt removal rate were decreased by 71, 44, and 27 %, respectively. The primary reason for the system performance decrease was biofouling on the membranes, which increased internal resistance and reduced the ionic transfer and energy conversion efficiency. Changing membranes was an effective method to recover the MDC performance. The microbial community diversity in the MDC anode was low compared with that of the reported microbial fuel cell (MFC), while the abundance of Proteobacteria was 30 % higher. The content of Planctomycetes in the cathode biofilm sample was much higher than that in biofouling on the cation exchange membrane (CEM), indicating that Planctomycetes were relevant to cathode oxygen reduction.
Afficher plus [+] Moins [-]Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices
2016
Kanakaraju, Devagi | Motti, Cherie A. | Glass, Beverley D. | Oelgemöller, Michael
Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO₂)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO₂ in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO₂-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO₂-mediated solar photocatalysis for degradation of DCF and NPX mixtures.
Afficher plus [+] Moins [-]Field-scale study of the influence of differing remediation strategies on trace metal geochemistry in metal mine tailings from the Irish Midlands
2016
Perkins, William T. | Bird, Graham | Jacobs, Suzanne R. | Devoy, Cora
Mine tailings represent a globally significant source of potentially harmful elements (PHEs) to the environment. The management of large volumes of mine tailings represents a major challenge to the mining industry and environmental managers. This field-scale study evaluates the impact of two highly contrasting remediation approaches to the management and stabilisation of mine tailings. The geochemistry of the tailings, overlying amendment layers and vegetation are examined in the light of the different management approaches. Pseudo-total As, Cd and Pb concentrations and solid-state partitioning (speciation), determined via sequential extraction, were established for two Tailings Management Facilities (TMFs) in Ireland subjected to the following: (1) a ‘walk-away’ approach (Silvermines) and (2) application of an amendment layer (Galmoy). PHE concentrations in roots and herbage of grasses growing on the TMFs were also determined. Results identify very different PHE concentration profiles with depth through the TMFs and the impact of remediation approach on concentrations and their potential bioavailability in the rooting zone of grass species. Data also highlight the importance of choice of grass species in remediation approaches and the benefits of relatively shallow-rooting Agrostis capillaris and Festuca rubra varieties. In addition, data from the Galmoy TMF indicate the importance of regional soil geochemistry for interpreting the influence of the PHE geochemistry of capping and amendment layers applied to mine tailings.
Afficher plus [+] Moins [-]Pretreatment of Petrochemical Secondary Effluent by Micro-flocculation and Dynasand Filtration: Performance and DOM Removal Characteristics
2016
Wu, Changyong | Wang, Yaning | Zhou, Baoying | Zhu, Chen
A pilot scale micro-flocculation and dynasand filtration process was used to pretreat the petrochemical secondary effluent. The suspended solids (SS) and the dissolved organic matter (DOM) removal characteristics were investigated. The results showed that the optimized poly aluminum ferric chloride (PFAC) dosage was 10 mg/L during the experiment. In this dosage period, the SS removal rate was as high as 50.58 % with the effluent SS of 15.38 mg/L when the influent SS was 33.53 mg/L. The COD removal rate was 10.42 %. The DOM fraction with large apparent molecular weight (MW) higher than 3 k was removed more significantly than that of small molecular DOM. Resin fractionation showed that the micro-flocculation and dynasand filtration process could preferentially remove the hydrophobic neutrals (HON) and hydrophobic acids (HOA) of DOM, so it could be suitable as the pretreatment unit. When oxidized by catalytic ozonation, the ozone consumption of COD removal for filtrated effluent was 1.2 g-O₃/g-COD while it was 1.6 g-O₃/g-COD for untreated petrochemical secondary effluent, saving 25 % of ozone consumption. The micro-flocculation and dynasand filtration is a suitable pretreatment process for petrochemical secondary effluent, especially when the subsequent unit is the catalytic ozonation process.
Afficher plus [+] Moins [-]Root Production of Fagus crenata Blume Saplings Grown in Two Soils and Exposed to Elevated CO2 Concentration: an 11-Year Free-Air-CO2 Enrichment (FACE) Experiment in Northern Japan
2016
Agathokleous, Evgenios | Watanabe, Makoto | Eguchi, Norikazu | Nakaji, Tatsuro | Satoh, Fuyuki | Koike, Takayoshi
We examined the root production of a set of Fagus crenata (Siebold’s beech) saplings grown in an infertile immature volcanic ash soil (VA) and another set in a fertile brown forest soil (BF) with both sets exposed to elevated CO₂. After the saplings had been exposed to ambient (370–390 μmol mol⁻¹) or elevated (500 μmol mol⁻¹) CO₂, during the daytime, for 11 growing seasons, the root systems were excavated. Elevated CO₂ boosted the total root production of saplings grown in VA and abolished the negative effect of VA under ambient CO₂, but there was no significant effect of elevated CO₂ on saplings grown in BF. These results indicate the projected elevated CO₂ concentrations may have a different impact in regions with different soil fertility while in regions with VA, a higher net primary production is expected. In addition, we observed large elevated CO₂-induced fine-root production and extensive foraging strategy of saplings in both soils, a phenomenon that may partly (a) adjust the biogeochemical cycles of ecosystems, (b) form their response to global change, and (c) increase the size and/or biodiversity of soil fauna. We recommend that future researches consider testing a soil with a higher degree of infertility than the one we tested.
Afficher plus [+] Moins [-]Occurrence of PPCPs in the marine environment: a review
2016
Arpin-Pont, Lauren | Bueno, Maria Jesus Martinez | Gomez, Elena | Fenet, Hélène
Little research has been conducted on the occurrence of pharmaceuticals and personal care products (PPCPs) in the marine environment despite being increasingly impacted by these contaminants. This article reviews data on the occurrence of PPCPs in seawater, sediment, and organisms in the marine environment. Data pertaining to 196 pharmaceuticals and 37 personal care products reported from more than 50 marine sites are analyzed while taking sampling strategies and analytical methods into account. Particular attention is focused on the most frequently detected substances at highest concentrations. A snapshot of the most impacted marine sites is provided by comparing the highest concentrations reported for quantified substances. The present review reveals that: (i) PPCPs are widespread in seawater, particularly at sites impacted by anthropogenic activities, and (ii) the most frequently investigated and detected molecules in seawater and sediments are antibiotics, such as erythromycin. Moreover, this review points out other PPCPs of concern, such as ultraviolet filters, and underlines the scarcity of data on those substances despite recent evidence on their occurrence in marine organisms. The exposure of marine organisms in regard to these insufficient data is discussed.
Afficher plus [+] Moins [-]Retention of Atmospheric Particulate by Three Woody Ornamental Species in Santiago, Chile
2016
Guerrero-Leiva, Nicole | Castro, SergioA. | Rubio, MaríaA. | Ortiz-Calderón, Claudia
It is traditionally accepted that urban vegetation contributes to improve air quality by intercepting and retaining the particulate matter. Although the mitigating role of plants has been recognized by several studies, the role of individual species is still poorly understood. This is particularly important in cities like Santiago (Chile), which has high levels of atmospheric particulate and also has high plant species diversity. In this study, we evaluated the retention of atmospheric particles by three widely distributed ornamental species (Nerium oleander, Pittosporum tobira, and Ligustrum lucidum) in Santiago. For this proposal, we took leaf samples in different sampling points across the city which vary in their concentration of atmospheric particulate. Samples were taken 12 and 16 days after a rainfall episode that washed the leaves of plants in the sampling sites. In the laboratory, leaves were washed to recover the surface retained particles that were collected to determine its mass gravimetrically. With this information, we estimated the foliar retention (mass of particulate matter retained in the foliar surface) and daily retention efficiency (mass of particulate matter retained in the foliar surface per day). We found that foliar retention and daily retention efficiency varied significantly between the studied species. The leaves of N. oleander retained 8.2 g m⁻² of particulate matter on average, those of P. tobira 6.1 g m⁻², and those of L. lucidum 3.9 g m⁻²; meanwhile, the daily retention efficiencies of particulate matter were 0.6, 0.4, and 0.3 g m⁻² day⁻¹ for N. oleander, P. tobira, and L. lucidum, respectively. These results suggest that the studied species retain atmospheric particulate matter differentially in Santiago. These results can be attributed to differences on leaf surface characteristics. The recognition of the most efficient species in the retention of the atmospheric particulate matter can help to decide which species can be used to improve the air quality in the city.
Afficher plus [+] Moins [-]Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules
2016
Adsorption of the herbicide glyphosate and its main metabolite AMPA (aminomethylphosphonic acid) was investigated on 17 different agricultural soils. Batch equilibration adsorption data are shown by Freundlich adsorption isotherms. Glyphosate adsorption is clearly affected by equilibration concentrations, but the nonlinear AMPA adsorption isotherms indicate saturation of the adsorption sites with increasing equilibrium concentrations. pHCₐCₗ₂ (i.e. experimental pH) is the major parameter governing glyphosate and AMPA adsorption in soils. However, considering pHCₐCₗ₂ values, available phosphate amount, and amorphous iron and aluminium oxide contents by using a nonlinear multiple regression equation, obtains the most accurate and powerful pedotransfer rule for predicting the adsorption constants for these two molecules. As amorphous iron and aluminium oxide contents in soil are not systematically determined, we also propose a pedotransfer rule with two variables—pHCₐCₗ₂ values and available phosphate amount—that remains acceptable for both molecules. Moreover, the use of the commonly measured pHwₐₜₑᵣ or pHKCₗ values gives less accurate results compared to pHCₐCₗ₂ measurements. To our knowledge, this study is the first AMPA adsorption characterization for a significant number of temperate climate soils.
Afficher plus [+] Moins [-]Changing Regional Emissions of Airborne Pollutants Reflected in the Chemistry of Snowpacks and Wetfall in the Rocky Mountain Region, USA, 1993–2012
2016
Ingersoll, George P. | Miller, Debra C. | Morris, Kristi H. | McMurray, Jill A. | Port, Garrett | Caruso, Brian S.
Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.
Afficher plus [+] Moins [-]Temporary Increase in Sea Salt Deposition Accelerates Recovery of Brown Trout (Salmo Trutta) Populations in Very Dilute and Acidified Mountain Lakes
2016
Enge, Espen | Auestad, Bjørn H. | Hesthagen, Trygve
We studied the recovery of brown trout populations from 1970 to 2010 in acidified mountain lakes with low ionic content in southwestern Norway. A total of 181 test fishing surveys with gill net series were performed in 59 lakes. We found that the most significant recovery occurred during the 1980s and early 1990s. In this period, only limited improvement in the water chemistry related to acidification, i.e., pH, was observed. However, due to a temporary increase in sea salt deposition, water conductivity almost doubled during this period. In many of the mountain lakes in the study area, the brown trout populations are restricted by ion deficit. Moreover, greater ionic strength ameliorates the effects of acidification by increasing the tolerance to H⁺. Well-established relationships between conductivity and the relative abundance of brown trout (CPUE) explain the observed recovery. We conclude that the dynamics of the sea salt ion contribution should be taken into consideration wherever biological recovery in very diluted water qualities is being evaluated.
Afficher plus [+] Moins [-]