Affiner votre recherche
Résultats 191-200 de 3,991
Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai city, China
2016
Wang, Qing | Liu, Min | Yu, Yingpeng | Li, Ye
Polycyclic aromatic hydrocarbons (PAHs) were studied in 230 daily fine particulate matter (PM2.5) samples collected in four seasons at urban and suburban sites of Shanghai, China. This study focused on the emission sources of PAHs and its dynamic results under different weather conditions and pollution levels and also emphasized on the spatial sources of PM2.5 and PAHs at a regional level. Annual concentrations of PM2.5 and 16 EPA priority PAHs were 53 μg/m3 and 6.9 ng/m3, respectively, with highest levels in winter. Positive matrix factorization (PMF) modeling identified four sources of PAHs: coal combustion, traffic, volatilization and biomass combustion, and coking, with contributions of 34.9%, 27.5%, 21.1% and 16.5%, respectively. The contribution of traffic, a local-indicative source, increased from 17.4% to 28.7% when wind speed changed from >2m/s to <2m/s, and increased from 18.3% to 31.3% when daily PAH concentrations changed from below to above the annual mean values. This indicated that local sources may have larger contributions under stagnant weather when poorer dispersion conditions and lower wind speed led to the accumulation of local-emitted pollutants. The trajectory clustering and potential source contribution function (PSCF) and concentration weighted trajectory (CWT) models showed clearly that air parcels moved from west had highest concentrations of PM2.5, total PAHs and high molecular weight (HMW) PAHs. While small differences were found among all five clusters in low molecular weight (LMW) PAHs. Sector analyses determined that regional transport source contributed 39.8% to annual PM2.5 and 52.5% to PAHs, mainly from western regions and varying with seasons. This work may make contribution to a better understanding and control of the increasingly severe air pollution in China as well as other developing Asian countries.
Afficher plus [+] Moins [-]Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China)
2016
Yao, Yiming | Chang, Shuai | Sun, Hongwen | Gan, Zhiwei | Hu, Hongwei | Zhao, Yangyang | Zhang, Yufen
Per- and polyfluoroalkyl substances (PFASs) were detected in the atmosphere of a source region in Tianjin, China. Fluorotelomer alcohols (FTOHs) were the dominant neutral PFASs in the atmosphere with total concentrations of 93.6-131 pg/m3 and 8:2 FTOH contributing the most, whereas perfluorooctane sulfonamide derivatives (PFOSAs) were two magnitudes lower or undetected. In comparison, ionic PFASs (perfluoroalkyl carboxyl acids (PFCAs)) in the atmosphere were detected at similar or even higher levels. At wastewater treatment plants (WWTPs), the air over influent was found with higher levels of FTOHs than over aeration tank and effluent; whereas in the air over the aeration tank, the concentrations of PFOSAs and nonvolatile ionic PFASs substantially increased, suggesting a possible direct release of ionic PFASs to the atmosphere besides the atmospheric conversion from volatile precursors. In the air phase, a low proportion (1-5%) of PFCAs was subjected to dry deposition in the source region. Interestingly, the dry-deposition-to-bulk-air ratios of PFCA analogues were the lowest at medium chain lengths (C8 and C9) and increased with either shorter or longer chain length. The extraordinary affinity of shorter-chain PFCAs (C6-C7) to particles was presumed to be due to their smaller molecular size favoring the interactions between the carboxyl head groups and specific sorption sites on particulate matter.
Afficher plus [+] Moins [-]Australian atmospheric lead deposition reconstructed using lead concentrations and isotopic compositions of archival lichen and fungi
2016
Wu, Liqin | Taylor, Mark Patrick | Handley, Heather K. | Wu, Michael
Lead concentrations and their isotopic compositions were measured in lichen genera Cladonia and Usnea and fungi genus Trametes from the Greater Sydney region (New South Wales, Australia) that had been collected and archived over the past 120 years. The median lead concentrations were elevated in lichens and fungi prior to the introduction of leaded petrol (Cladonia 12.5 mg/kg; Usnea 15.6 mg/kg; Trametes 1.85 mg/kg) corresponding to early industrial development. During the period of leaded petrol use in Australian automobiles from 1932 to 2002, total median lead concentrations rose: Cladonia 18.8 mg/kg; Usnea 21.5 mg/kg; Trametes 4.3 mg/kg. Following the cessation of leaded petrol use, median total lead concentrations decreased sharply in the 2000s: Cladonia 4.8 mg/kg; Usnea 1.7 mg/kg. The lichen and fungi isotopic compositions reveal a significant decrease in ²⁰⁶Pb/²⁰⁷Pb ratios from the end of 19th century to the 1970s. The following decades were characterised by lower allowable levels of lead additive in fuel and the introduction of unleaded petrol in 1985. The environmental response to these regulatory changes was that lichen and fungi ²⁰⁶Pb/²⁰⁷Pb ratios increased, particularly from 1995 onwards. Although the lead isotope ratios of lichens continued to increase in the 2000s they do not return to pre-leaded petrol values. This demonstrates that historic leaded petrol emissions, inter alia other sources, remain a persistent source of anthropogenic contamination in the Greater Sydney region.
Afficher plus [+] Moins [-]Influence of Southeast Asian Haze episodes on high PM10 concentrations across Brunei Darussalam
2016
Dotse, Sam-Quarcoo | Dagar, Lalit | Petra, Mohammad Iskandar | De Silva, Liyanage C.
Particulate matter (PM10) is the key indicator of air quality index in Brunei Darussalam and the principal pollutant for haze related episodes in Southeast Asia. This study examined the temporal and spatial distribution of PM10 base on a long-term monitoring data (2009–2014) in order to identify the emission sources and favorable meteorological conditions for high PM10 concentrations across the country. PM10 concentrations measured at the various locations differ significantly but the general temporal characteristics show clear patterns of seasonal variations across the country with the highest concentrations recorded during the southwest monsoon. The high PM10 values defined in the study were not evenly distributed over the years but occurred mostly within the southwest monsoon months of June to September. Further investigations with bivariate polar concentrations plots and k-means clustering demonstrated the significant influence of Southeast Asian regional biomass fires on the high PM10 concentrations recorded across the country. The results of the polar plots and cluster analyses were further confirmed by the evaluations with Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) backward air masses trajectories analysis and the Moderate Resolution Imaging Spectroradiometer (MODIS) fire records. Among the meteorological variables considered, temperature, rainfall and relative humidity were the most important meteorological variables that influence the concentration throughout the year. High PM10 values are associated with high temperatures and low amounts of rainfall and relative humidity. In addition, wind speed and direction also play significant role in the recorded high PM10 concentrations and were mainly responsible for its seasonality during the study period.
Afficher plus [+] Moins [-]An investigation into the effects of silver nanoparticles on natural microbial communities in two freshwater sediments
2016
Bao, Shaopan | Wang, Han | Zhang, Weicheng | Xie, Zhicai | Fang, Tao
The expanding production and usage of commercial silver nanoparticles (AgNPs) will inevitably increase their environmental release, with sediments as a substantial sink. However, little knowledge is available about the potential impacts of AgNPs on freshwater sediment microbial communities, as well as the interactions between microbial communities and biogeochemical factors in AgNPs polluted sediment. To address these issues, two different sediments: a eutrophic freshwater sediment and an oligotrophic freshwater sediment, were exposed to 1 mg/g of either AgNO3, uncoated AgNPs (35-nm and 75-nm), or polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) (30–50 nm) for 45 days. High-throughput sequencing of 16S ribosomal ribonucleic acid (16S rRNA) genes using the Illumina MiSeq platform was conducted to evaluate the effects of Ag addition on bacterial community composition. Moreover, sediment microbial biomass and activity were assessed by counting cultivable bacterial number and determining enzyme activities. During the 45-day exposure, compared with no amendment control, some treatments had resulted in significant changes and alterations of sediment biomass or bacterial enzyme activities shortly. While the microbial components at phylum level were rarely affected by AgNPs addition, and as confirmed by the statistical analysis with two-factor analysis of similarities (ANOSIM), there were no significant differences on bacterial community structure across the amended treatments. Redundancy analysis further demonstrated that chemical parameters acid-volatile sulfide (AVS) and simultaneously extracted silver (SE-Ag) in sediment significantly structured the overall bacterial community in sediments spiked with various silver species. In summary, these findings suggested that the ecotoxicity of AgNPs may be attenuated by the transformation under complex environmental conditions and the self-adaption of sediment microbial communities.
Afficher plus [+] Moins [-]Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils
2016
Wu, Huibin | Song, Zhengguo | Wang, Xiao | Liu, Zhongqi | Tang, Shirong
Environmental pollution by both ambient CO2 and heavy metals has been steadily increasing, but we do not know how fluctuating CO2 concentrations influence plant nutrients under high Cd pollution, especially in crops. Here, we studied the effects of elevated CO2 and Cd accumulation on proteins and amino acids in rice under Cd stress. In this pot experiment, we analyzed the amino-acid profile of 20 rice cultivars that accumulate Cd differently; the plants were grown in Cd-containing soils under ambient conditions and elevated CO2 levels. We found that although Cd concentrations appeared to be higher in most cultivars under elevated CO2 than under ambient CO2, the effect was significant only in seven cultivars. Combined exposure to Cd and elevated CO2 strongly decreased rice protein and amino acid profiles, including essential and non-essential amino acids. Under elevated CO2, the ratios of specific amino acids were either higher or lower than the optimal ratios provided by FAO/WHO, suggesting that CO2 may flatten the overall amino-acid profile, leading to an excess in some amino acids and deficiencies in others when the rice is consumed. Thus, Cd-tainted rice limits the concentration of essential amino acids in rice-based diets, and the combination with elevated CO2 further exacerbates the problem.
Afficher plus [+] Moins [-]Reduced salinity increases susceptibility of zooxanthellate jellyfish to herbicide toxicity during a simulated rainfall event
2016
Klein, Shannon G. | Pitt, Kylie A. | Carroll, Anthony R.
Accurately predicting how marine biota are likely to respond to changing ocean conditions requires accurate simulation of interacting stressors, exposure regimes and recovery periods. Jellyfish populations have increased in some parts of the world and, despite few direct empirical tests, are hypothesised to be increasing because they are robust to a range of environmental stressors. Here, we investigated the effects of contaminated runoff on a zooxanthellate jellyfish by exposing juvenile Cassiopea sp. medusae to a photosystem II (PSII) herbicide, atrazine and reduced salinity conditions that occur following rainfall. Four levels of atrazine (0ngL⁻¹, 10ngL⁻¹, 2μgL⁻¹, 20μgL⁻¹) and three levels of salinity (35 ppt, 25 ppt, 17 ppt) were varied, mimicking the timeline of light, moderate and heavy rainfall events. Normal conditions were then slowly re-established over four days to mimic the recovery of the ecosystem post-rain and the experiment continued for a further 7 days to observe potential recovery of the medusae. Pulse-amplitude modulated (PAM) chlorophyll fluorescence, growth and bell contraction rates of medusae were measured. Medusae exposed to the combination of high atrazine and lowest salinity died. After 3 days of exposure, bell contraction rates were reduced by 88% and medusae were 16% smaller in the lowest salinity treatments. By Day 5 of the experiment, all medusae that survived the initial pulse event began to recover quickly. Although atrazine decreased YII under normal salinity conditions, YII was further reduced when medusae were exposed to both low salinity and atrazine simultaneously. Atrazine breakdown products were more concentrated in jellyfish tissues than atrazine at the end of the experiment, suggesting that although bioaccumulation occurred, atrazine was metabolised. Our results suggest that reduced salinity may increase the susceptibility of medusae to herbicide exposure during heavy rainfall events.
Afficher plus [+] Moins [-]Towards a better spatial quantification of nitrogen deposition: A case study for Czech forests
2016
Hůnová, Iva | Kurfürst, Pavel | Vlček, Ondřej | Stráník, Vojtěch | Stoklasová, Petra | Schovánková, Jana | Srbová, Daša
The quantification of atmospheric deposition flux is essential for assessment of its impact on ecosystems. We present an advanced approach for the estimation of the spatial pattern of atmospheric nitrogen deposition flux over the Czech forests, collating all available measured data and model results. The aim of the presented study is to provide an improved, more complete, more reliable and more realistic estimate of the spatial pattern of nitrogen deposition flux over one country. This has so far usually been based on measurements of ambient NOx concentrations as dry deposition proxy, and NH4+ and NO3− in precipitation as wet deposition proxy. For estimation of unmeasured species contributing to dry deposition, we used the CAMx Eulerian photochemical dispersion model, coupled with the Aladin regional numeric weather prediction model. The contribution of fog and dissolved organic nitrogen was estimated using a geostatistical data driven model. We prepared individual maps for particular components applying the most relevant approach and then merged all layers to obtain a final map representing the best estimate of nitrogen deposition over the Czech Republic. Final maps accounting for unmeasured species clearly indicate that the approach used so far may result in a substantial underestimation of nitrogen deposition flux. Our results showed that nitrogen deposition over the Czech forested area in 2008 was well above 2 g N m−2 yr−1, with almost 70% of forested area receiving 3–4 g N m−2 yr−1. NH3 and gaseous HNO3, contributing about 80%, dominated the dry nitrogen deposition. Estimating the unmeasured nitrogen species by modeled values provides realistic approximations of total nitrogen deposition that also result in more realistic spatial patterns that could be used as input for further studies of likely nitrogen impacts on ecosystems.
Afficher plus [+] Moins [-]Effects of Lumbriculus variegatus (Annelida, Oligochaete) bioturbation on zinc sediment chemistry and toxicity to the epi-benthic invertebrate Chironomus tepperi (Diptera: Chironomidae)
2016
Colombo, Valentina | Pettigrove, Vincent J. | Hoffmann, Ary A. | Golding, Lisa A.
Classical laboratory-based single-species sediment bioassays do not account for modifications to toxicity from bioturbation by benthic organisms which may impact predictions of contaminated sediment risk to biota in the field. This study aims to determine the effects of bioturbation on the toxicity of zinc measured in a standard laboratory bioassay conducted with chironomid larvae (Chironomus tepperi). The epi-benthic chironomid larvae were exposed to two different levels of sediment contamination (1600 and 1980 mg/kg of dry weight zinc) in the presence or absence of annelid worms (Lumbriculus variegatus) which are known to be tolerant to metal and to have a large impact on sediment properties through bioturbation.Chironomids had 5–6x higher survival in the presence of L. variegatus which shows that bioturbation had a beneficial effect on the chironomid larvae. Chemical analyses showed that bioturbation induced a flux of zinc from the pore water into the water column, thereby reducing the bioavailability of zinc in pore water to the chironomid larvae. This also suggested that pore water was the major exposure path for the chironomids to metals in sediment. During the study, annelid worms (Oligochaetes) produced a thin layer of faecal pellets at the sediment surface, a process known to: (i) create additional adsorption sites for zinc, thus reducing its availability, (ii) increase the microbial abundance that in turn could represent an additional food source for opportunistic C. tepperi larvae, and (iii) modify the microbial community’s structure and alter the biogeochemical processes it governs thus indirectly impact zinc toxicity.This study represents a contribution in recognising bioturbating organisms as “ecological engineers” as they directly and indirectly influence metal bioavailability and impact other sediment-inhabiting species. This is significant and should be considered in risk assessment of zinc levels (and other metals) in contaminated sediment when extrapolating from laboratory studies to the field.
Afficher plus [+] Moins [-]Assessment of sediment hydrocarbon contamination from the 2009 Montara oil blow out in the Timor Sea
2016
Burns, Kathryn A. | Jones, Ross
In August 2009, a blowout of the Montara H1 well 260 km off the northwest coast of Australia resulted in the uncontrolled release of about 4.7 M L of light crude oil and gaseous hydrocarbons into the Timor Sea. Over the 74 day period of the spill, the oil remained offshore and did not result in shoreline incidents on the Australia mainland. At various times slicks were sighted over a 90,000 km² area, forming a layer of oil which was tracked by airplanes and satellites but the slicks typically remained within 35 km of the well head platform and were treated with 183,000 L of dispersants. The shelf area where the spill occurred is shallow (100–200 m) and includes off shore emergent reefs and cays and submerged banks and shoals. This study describes the increased inputs of oil to the system and assesses the environmental impact. Concentrations of hydrocarbon in the sediment at the time of survey were very low (total aromatic hydrocarbons (PAHs) ranged from 0.04 to 31 ng g⁻¹) and were orders of magnitude lower than concentrations at which biological effects would be expected.
Afficher plus [+] Moins [-]