Affiner votre recherche
Résultats 191-200 de 5,152
Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in rural Beijing: Unabated with enhanced temporary emission control during the 2014 APEC summit and largely aggravated after the start of wintertime heating Texte intégral
2018
Yu, Qingqing | Yang, Weiqiang | Zhu, Ming | Gao, Bo | Li, Sheng | Li, Guanghui | Fang, Hua | Zhou, Huaishan | Zhang, Huina | Wu, Zhenfeng | Song, Wei | Tan, Jihua | Zhang, Yanli | Bi, Xinhui | Chen, Laiguo | Wang, Xinming
For human health benefits it is crucial to see if carcinogenic air pollutants like polycyclic aromatic hydrocarbons (PAHs) are reduced accordingly along with the control of the criteria pollutants including fine particles (PM₂.₅). A number of studies documented that enhanced temporary emission control during the 2014 Asia-Pacific Economic Cooperation summit (APEC) in Beijing resulted in substantial drops of observed ambient PM₂.₅, as well as PAHs, in urban areas of Beijing, yet it is not clear whether PM₂.₅-bound PAHs in the rural areas were also lowered during the APEC. Here filter-based PM₂.₅ samples were collected at a rural site in northeast of Beijing, and analyzed for 25 PAHs before (Oct. 27-Nov. 2, 2014), during (Nov. 3–12, 2014) and after (Nov. 13, 2014–Jan. 14, 2015) the APEC. Observed concentrations of PM₂.₅, OC and EC during the APEC dropped by about 30%, however, average PM₂.₅-bound PAHs and their incremental lifetime cancer risk (ILCR), 25.65 ng/m³ and 3.2 × 10⁻⁴, remained almost unchanged when compared to that of 25.48 ng/m³ and 3.5 × 10⁻⁴, respectively, before the APEC. After the APEC with the start of wintertime central heating in urban Beijing on Nov. 15, 2014, average total concentration of PAHs and their ILCR highly elevated and reached 118.25 ng/m³ and 1.5 × 10⁻³, respectively. Source apportioning by positive matrix factorization (PMF) revealed that coal combustion was the largest source that contributed 63.2% (16.1 ng/m³), 78.5% (20.1 ng/m³) and 56.1% (66.3 ng/m³) to the total PAHs before, during and after the APEC, respectively. Uncontrolled residential coal use during the APEC was found to be the reason for unabated levels of PAHs, and the largely aggravated PAHs after the APEC was resulted from increased coal consumption for wintertime residential heating. Our results suggested reducing emission from residential coal combustion is crucial to mitigate carcinogenic PAHs in ambient air, especially in rural areas.
Afficher plus [+] Moins [-]Characteristics of perfluoroalkyl acids in atmospheric PM10 from the coastal cities of the Bohai and Yellow Seas, Northern China Texte intégral
2018
Yu, ShuangYu | Liu, Weijian | Xu, YunSong | Zhao, YongZhi | Wang, Pei | Wang, Xin | Li, Xinyue | Cai, ChuanYang | Liu, Yang | Xiong, GuanNan | Tao, Shu | Liu, Wenxin
The concentration distributions, compositional profiles and seasonal variations of 17 perfluoroalkyl acids (PFAAs) in PM₁₀ (particles with aerodynamic diameters < 10 μm) were determined in seven coastal cities of the Bohai and Yellow Seas. The detection rates of perfluorooctanoic acid (PFOA) and short-chain components (perfluoroalkyl carboxylic acids (PFCAs) with ≤7 carbon atoms and perfluoroalkane sulfonic acids (PFSAs) with ≤5 carbon atoms) were much higher than those of other long-chain PFAA species. The annual average concentration of total PFAAs in PM₁₀ ranged from 23.6 pg/m³ to 94.5 pg/m³ for the sampling cities. The monthly mean concentrations of PFAAs in PM₁₀ in some sampling cities reached a peak value in winter, while no significant seasonal differences presented in other cities. High concentrations of PFAAs in the northern cities generally occurred during the local heating period (from November to March). Generally, the dominant components of PFAAs were PFOA and perfluorobutyric acid (PFBA). Some significantly positive correlations (p < 0.01) between the 10 dominant components were revealed in the sampling cities, which implied similar sources and fate behaviors. Based on the simulated 72-hr backward trajectory tracking of air masses, the clustering results demonstrated the sampling cities were affected mainly by the atmospheric transport in sequence from the northwest, the southwest and the open seas, and many transport trajectories of air masses passed by the local fluorine chemical manufacturers in Liaoning, Shandong, Jiangsu, and Hubei Provinces. The estimated average daily intake (ADI) corresponding to the residents in different age groups indicated insignificant contributions to PFOA and perfluorooctane sulfonate (PFOS) exposures by inhalation of PM₁₀ compared to ingestion by daily diet, while the higher ADI of PFOA than the reported levels for adults should be a concern. The calculated hazard ratios (HR) exhibited low noncancer risks by inhalation exposure to PFOA and PFOS in PM₁₀.
Afficher plus [+] Moins [-]Projecting temperature-related years of life lost under different climate change scenarios in one temperate megacity, China Texte intégral
2018
Li, Yixue | Li, Guoxing | Zeng, Qiang | Liang, Fengchao | Pan, Xiaochuan
Temperature has been associated with population health, but few studies have projected the future temperature-related years of life lost attributable to climate change. To project future temperature-related disease burden in Tianjin, we selected years of life lost (YLL) as the dependent variable to explore YLL attributable to climate change. A generalized linear model (GLM) and distributed lag non-linear model were combined to assess the non-linear and delayed effects of temperature on the YLL of non-accidental mortality. Then, we calculated the YLL changes attributable to future climate scenarios in 2055 and 2090. The relationships of daily mean temperature with the YLL of non-accident mortality were basically U-shaped. Both the daily mean temperature increase on high-temperature days and its drop on low-temperature days caused an increase of YLL and non-accidental deaths. The temperature-related YLL will worsen if future climate change exceeds 2 °C. In addition, the adverse effects of extreme temperature on YLL occurred more quickly than that of the overall temperature. The impact of low temperature was greater than that of high temperature. Men were vulnerable to high temperature compared with women. This analysis highlights that the government should formulate environmental policies to reach the Paris Agreement goal.
Afficher plus [+] Moins [-]Effects of chronic pollution and water flow intermittency on stream biofilms biodegradation capacity Texte intégral
2018
Rožman, Marko | Acuña, V. (Vicenç) | Petrović, M. (Mira)
A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams.
Afficher plus [+] Moins [-]Bioaccumulation and human health risks of OCPs and PCBs in freshwater products of Northeast China Texte intégral
2018
Fu, Lei | Lu, Xianbo | Tan, Jun | Zhang, Haijun | Zhang, Yichi | Wang, Shuqiu | Chen, Jiping
The levels and spatial distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in freshwater products from Northeast China were investigated by gas chromatography coupled to isotope dilution high-resolution mass spectrometry. All samples were on-spot sampled from main production regions of freshwater products in Northeast China, and these samples were used to systematically assess the potential health risks of OCPs and PCBs associated with consumption of these fishery products. Dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexane (HCHs), hexachlorobenzene (HCB) and PCBs were the major pollutants with 100% detection rates, and their levels ranged from 0.086 to 58, 0.038–3.3, 0.093–4.5 and 0.032–1.4 ng g⁻¹ wet weight, respectively. The estimated dietary intakes of these contaminants were all below their corresponding acceptable daily intakes. Significant regional differences in the levels of OCPs and PCBs (P ≦ 0.001) were found in samples from Liaoning and Inner Mongolia. The results showed that the concentrations of targeted contaminants in aquatic products had species-specific characteristics, and the levels of targeted pollutants in Oncorhynchus mykiss and Eriocheir sienesis were significantly higher than those in other aquatic product species. Advisories on ten species of aquatic products suggested that consumption of Eriocheir sinensis, Oncorhynchus mykiss and Cyprinus carpio at a rate exceeding 15 meals per month would pose a cancer risk. A health risk assessment indicated that exposure to these pollutants through freshwater products consumption would cause a non-ignorable potential carcinogenic risk to humans.
Afficher plus [+] Moins [-]A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use Texte intégral
2018
Huang, Jinhui | Guo, Shiting | Zeng, Guang-ming | Li, Fei | Ku, Yenlin | Shi, Yahui | Shi, Lixiu | Liu, Wenchu | Peng, Shuying
Heavy metals in the topsoil affected adversely human health through inhalation, ingestion and dermal contact. The health risk assessment, which are quantified from soil heavy metals sources under different land use, can provide an important reference basis for preventing and controlling the soil heavy metals pollution from the source. In this study, simple statistical analysis and Positive Matrix Factorization (PMF) were used to quantify sources of soil heavy metals; then a health risk assessment (HRA) model combined with PMF was proposed to assess quantificationally the human health risk (including non-cancer risk and cancer risk) from sources under residential-land, forest-land and farm land. Xiang River New District (XRNQ) was chosen as the example and four significant sources were quantitatively analyzed in the study. For cancer risk, industrial discharge was the largest source and accounted for about 69.6%, 69.7%, 56.5% for adults under residential-land, forest-land and farm-land, respectively. For non-cancer risk, industrial discharge was still the largest significant source under residential-land and forest-land and accounted for about 41.7%, 39.2% for adult, respectively; while agricultural activities accounted for about 51.8% for adult under farm-land. The risk trend of children, including cancer risk and non-cancer risk, was similar with adults. However, the non-cancer risk areas of adults affected by industrial discharge was higher than that of children, while the cancer risk areas of adults were on the contrary. The new exploration was useful to assess health risk quantification from sources under different land use, thus providing certain reference in preventing and controlling the pollution from the source for local authorities effectively.
Afficher plus [+] Moins [-]Cortex and hippocampus DNA epigenetic response to a long-term arsenic exposure via drinking water Texte intégral
2018
Du, Xiaoyan | Tian, Meiping | Wang, Xiaoxue | Zhang, Jie | Huang, Qingyu | Liu, Liangpo | Shen, Heqing
The neurotoxicity of arsenic is a serious health problem, especially for children. DNA epigenetic change may be an important pathogenic mechanism, but the molecular pathway remains obscure. In this study, the weaned male Sprague-Dawly (SD) rats were treated with arsenic trioxide via drinking water for 6 months, simulating real developmental exposure situation of children. Arsenic exposure impaired the cognitive abilities, and altered the expression of neuronal activity-regulated genes. Total arsenic concentrations of cortex and hippocampus tissues were significantly increased in a dose-dependent manner. The reduction in 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5hmC) levels as well as the down-regulation of DNA methyltransferases (DNMTs) and ten–eleven translocations (TETs) expression suggested that DNA methylation/demethylation processes were significantly suppressed in brain tissues. S-adenosylmethionine (SAM) level wasn't changed, but the expression of the important indicators of oxidative/anti-oxidative balance and tricarboxylic acid (TCA) cycle was significantly deregulated. Overall, arsenic can disrupt oxidative/anti-oxidative balance, further inhibit TETs expression through TCA cycle and alpha-ketoglutarate (α-KG) pathway, and consequently cause DNA methylation/demethylation disruption. The present study implies oxidative stress but not SAM depletion may lead to DNA epigenetic alteration and arsenic neurotoxicity.
Afficher plus [+] Moins [-]From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama Texte intégral
2018
Batista-Andrade, Jahir Antonio | Caldas, Sergiane Souza | Batista, Rodrigo Moço | Castro, Italo Braga | Fillmann, Gilberto | Primel, Ednei Gilberto
Antifouling biocides in surface sediments and gastropod tissues were assessed for the first time along coastal areas of Panama under the influence of maritime activities, including one of the world's busiest shipping zones: the Panama Canal. Imposex incidence was also evaluated in five muricid species distributed along six coastal areas of Panama. This TBT-related biological alteration was detected in three species, including the first report in Purpura panama. Levels of organotins (TBT, DBT, and MBT) in gastropod tissues and surficial sediments ranged from <5 to 104 ng Sn g⁻¹ and <1–149 ng Sn g⁻¹, respectively. In addition, fresh TBT inputs were observed in areas considered as moderate to highly contaminated mainly by inputs from fishing and leisure boats. Regarding booster biocides, TCMTB and dichlofluanid were not detected in any sample, while irgarol 1051, diuron and DCOIT levels ranged from <0.08 to 2.8 ng g⁻¹, <0.75–14.1 ng g⁻¹, and <0.38–81.6 ng g⁻¹, respectively. The highest level of TBT (149 ng Sn g⁻¹) and irgarol 1051 (2.8 ng g⁻¹), as well as relevant level of DCOIT (5.7 ng g⁻¹), were detected in a marina used by recreational boats. Additionally, relatively high diuron values (14.1 ng g⁻¹) were also detected in the Panama Canal associate to a commercial port. DCOIT concentrations were associated with the presence of antifouling paint particles in sediments obtained nearby shipyard or boat maintenance sites. The highest levels of TBT, irgarol 1051, and diuron exceeded international sediment quality guidelines indicating that toxic effects could be expected in coastal areas of Panama. Thus, the simultaneous impacts produced by new and old generations of antifouling paints highlight a serious environmental issue in Panamanian coastal areas.
Afficher plus [+] Moins [-]Historical legacies of river pollution reconstructed from fish scales Texte intégral
2018
Morán, Paloma | Cal, Laura | Cobelo-García, Antonio | Almécija, Clara | Caballero, Pablo | Garcia de Leaniz, Carlos
Historical legacies of river pollution reconstructed from fish scales Texte intégral
2018
Morán, Paloma | Cal, Laura | Cobelo-García, Antonio | Almécija, Clara | Caballero, Pablo | Garcia de Leaniz, Carlos
Many rivers have been impacted by heavy metal pollution in the past but the long-term legacies on biodiversity are difficult to estimate. The River Ulla (NW Spain) was impacted by tailings from a copper mine during the 1970–1980s but absence of baseline values and lack of subsequent monitoring have prevented a full impact assessment. We used archived fish scales of Atlantic salmon to reconstruct levels of historical copper pollution and its effects on salmon fitness. Copper bioaccumulation significantly increased over baseline values during the operation of the mine, reaching sublethal levels for salmon survival. Juvenile growth and relative population abundance decreased during mining, but no such effects were observed in a neighbouring river unaffected by mining. Our results indicate that historical copper exposure has probably compromised the fitness of this Atlantic salmon population to the present day, and that fish scales are suitable biomarkers of past river pollution.
Afficher plus [+] Moins [-]Historical legacies of river pollution reconstructed from fish scales Texte intégral
2018
Morán, Paloma | Cal, Laura | Cobelo-García, A. | Almécija, Clara | Caballero, Pablo | García de Leaniz, Carlos | Xunta de Galicia | European Commission
7 pages, 5 figures, 2 tables | Many rivers have been impacted by heavy metal pollution in the past but the long-term legacies on biodiversity are difficult to estimate. The River Ulla (NW Spain) was impacted by tailings from a copper mine during the 1970–1980s but absence of baseline values and lack of subsequent monitoring have prevented a full impact assessment. We used archived fish scales of Atlantic salmon to reconstruct levels of historical copper pollution and its effects on salmon fitness. Copper bioaccumulation significantly increased over baseline values during the operation of the mine, reaching sublethal levels for salmon survival. Juvenile growth and relative population abundance decreased during mining, but no such effects were observed in a neighbouring river unaffected by mining. Our results indicate that historical copper exposure has probably compromised the fitness of this Atlantic salmon population to the present day, and that fish scales are suitable biomarkers of past river pollution. | This work was partly funded by a grant from Xunta de Galicia and Fondos FEDER: "Unha maneira de facer Europa" (Axudas do programa de consolidación e estruturación de unidades de investigacións competitivas do SUG: ED431C 2016-037). | Peer reviewed
Afficher plus [+] Moins [-]Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks Texte intégral
2018
de Oliveira Galvão, Marcos Felipe | de Oliveira Alves, Nilmara | Ferreira, Paula Anastácia | Caumo, Sofia | de Castro Vasconcellos, Pérola | Artaxo Netto, Paulo Eduardo | de Souza Hacon, Sandra | Roubicek, Deborah Arnsdorff | Batistuzzo de Medeiros, Silvia Regina
Emissions from burning of biomass in the Amazon region have adverse effects on the environment and human health. Herein, particulate matter (PM) emitted from biomass burning in the Amazon region during two different periods, namely intense and moderate, was investigated. This study focused on: i) organic characterization of nitro- and oxy-polycyclic aromatic hydrocarbons (PAHs); ii) assessment of the excess lifetime cancer risk (LCR); and iii) assessment of the in vitro mutagenic effects of extractable organic matter (EOM). Further, we compared the sensitivity of two mutagenicity tests: Salmonella/microsome test and cytokinesis-block micronucleus (CBMN) with human lung cells. Among the nitro-PAHs, 2-nitrofluoranthene, 7-nitrobenz[a]anthracene, 1-nitropyrene, and 3-nitrofluoranthene showed the highest concentrations, while among oxy-PAHs, 2-metylanthraquinone, benz[a]anthracene-7,12-dione, and 9,10-anthraquinone were the most abundant. The LCR calculated for nitro-PAH exposure during intense biomass burning period showed a major contribution of 6-nitrochrysene to human carcinogenic risk. The EOM from intense period was more mutagenic than that from moderate period for both TA98 and YG1041 Salmonella strains. The number of revertants for YG1041 was 5–50% higher than that for TA98, and the most intense responses were obtained in the absence of metabolic activation, suggesting that nitroaromatic compounds with direct-acting frameshift mutagenic activity are contributing to the DNA damage. Treatment of cells with non-cytotoxic doses of EOM resulted in an increase in micronuclei frequencies. The minimal effective dose showed that Salmonella/microsome test was considerably more sensitive in comparison with CBMN mainly for the intense burning period samples. This was the first study to assess the mutagenicity of EOM associated with PM collected in the Amazon region using Salmonella/microsome test. The presence of compounds with mutagenic effects, particularly nitro- and oxy-PAHs, and LCR values in the range of 10⁻⁵ indicate that the population is potentially exposed to an increased risk of DNA damage, mutation, and cancer.
Afficher plus [+] Moins [-]