Affiner votre recherche
Résultats 1941-1950 de 8,010
Bio-based dispersants for fuel oil spill remediation based on the Hydrophilic-Lipophilic Deviation (HLD) concept and Box-Behnken design Texte intégral
2021
Nawavimarn, Parisarin | Rongsayamanont, Witchaya | Subsanguan, Tipsuda | Luepromchai, Ekawan
The high density and viscosity of fuel oil leads to its prolonged persistence in the environment and causes widespread contamination. Dispersants with a low environmental impact are necessary for fuel oil spill remediation. This study aimed to formulate bio-based dispersants by mixing anionic biosurfactant (lipopeptides from Bacillus subtilis GY19) with nonionic oleochemical surfactant (Dehydol LS7TH). The synergistic effect of the anionic-nonionic surfactant mixture produced a Winsor Type III microemulsion, which promoted petroleum mobilization. The hydrophilic-lipophilic deviation (HLD) equations for ionic and nonionic surfactant mixtures were compared, and it was found that the ionic equation was applicable for the calculation of lipopeptides and Dehydol LS7TH concentrations. The best formula contained 6.6% w/v lipopeptides and 11.9% w/v Dehydol LS7TH in seawater, and its dispersion effectiveness for bunker fuels A and C was 92% and 78%, respectively. The application of bio-based dispersants in water sources was optimized by Box-Behnken design. The efficiency of the bio-based dispersant was affected by the dispersant-to-oil ratios (DORs) but not by the water salinity. A suitable range of DORs for different oil contamination levels could be identified from the response surface plot. The dispersed fuel oil was further degraded by adding an oil-degrading bacterial consortium to the chemically enhanced water accommodated fractions (CEWAFs). After 7 days of incubation, the concentration of fuel oil was reduced from 3692 mg/L to 356 mg/L (88% removal efficiency). On the other hand, the abiotic control removed less than 40% fuel oil from the CEWAFs. This bio-based dispersant had an efficiency comparable to that of a commercial dispersant. The process of dispersant formulation and optimization could be applied to other surfactant mixtures.
Afficher plus [+] Moins [-]Litter contamination at a salt marsh: An ecological niche for biofouling in South Brazil Texte intégral
2021
Pinheiro, Lara M. | Carvalho, Isadora V. | Agostini, Vanessa O. | Martinez-Souza, Gustavo | Galloway, Tamara S. | Pinho, Grasiela L.L.
The presence of solid litter and its consequences for coastal ecosystems is now being investigated around the world. Different types of material can be discarded in areas such as salt marshes, and various fouling organisms can associate with such items forming the Plastisphere. This study investigated the distribution of solid litter along zones (dry, middle, flooded) of a salt marsh environment in the Patos Lagoon Estuary (South Brazil) and the association of biofouling organisms with these items. Solid litter quantities were significantly higher in the dry zone when compared to the middle and flooded zones, showing an accumulation area where the water rarely reaches. Most items were made of plastic, as shown for many other coastal areas, and originated from food packaging, fishery and shipping activities and personal use. Although not statistically significant, there was a tendency of increased biofouling towards the flooded zone. Thirteen groups were found in association with solid litter items, mainly algae, amphipods, and gastropods. The preference for salt marsh zones, types of material and items’ colour was highly variable among groups of organisms, which can be related to their varied physiological requirements. In summary, significant plastic contamination of salt marshes of the Patos Lagoon was associated with a heterogeneous distribution of fouling communities.
Afficher plus [+] Moins [-]Spatiotemporal variation and distribution characteristics of crop residue burning in China from 2001 to 2018 Texte intégral
2021
Yin, Shuai | Guo, Meng | Wang, Xiufeng | Yamamoto, Haruhiko | Ou, Wei
In this study, we integrated a remote-sensing fire product (MOD14A1) and land-use product (MCD12Q1) to extract the number of crop-residue burning (CRB) spots and the fire radiative power (FRP) in China from 2001 to 2018. Moreover, we conducted three trend analyses and two geographic distribution analyses to quantify the interannual variations and summarize the spatial characteristics of CRB on grid (0.25° × 0.25°) and regional scales. The results indicated that CRB presents distinctive seasonal patterns with each sub-region. All trend analyses suggested that the annual number of CRB spots in China increased significantly from 2001 to 2018; the linear trend reached 2615 spots/year, the Theil-Sen slope was slightly lower at 2557 spots/year, and the Mann-Kendal τ was 0.75. By dividing the study period into two sub-periods, we found that the five sub-regions presented different trends in the first and second sub-periods; e.g., the Theil-Sen slope of eastern China in the first sub-period (2001–2009) was 1021 spots/year but was −1599 spots/year in the second period (2010–2018). This suggests that summer CRB has been effectively mitigated in eastern China since 2010. Further, the average FRP of CRB spots presented a decreasing trend from 27.5 MW/spot in 2001 to only 15.8 MW/spot in 2018; this may be attributable to more scattered CRB rather than aggregated CRB. Collectively, the fire spots, FRP, and average FRP indicated that spring, summer, and autumn CRB had dropped dramatically over previous levels by 2018 due to strict mitigation measures by local governments.
Afficher plus [+] Moins [-]Interactions between pyrene and heavy metals and their fates in a soil-maize (Zea mays L.) system: Perspectives from the root physiological functions and rhizosphere microbial community Texte intégral
2021
Wang, Yuhui | Li, Manjie | Liu, Zhaowei | Zhao, Juanjuan | Chen, Yongcan
The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in agricultural soils has become a worldwide food crop security concern. Pot experiments, rhizosphere microbial metagenomic sequencing, and root metatranscriptomic sequencing were performed to investigate the interactions among pyrene, Cu, and Cd in a soil-maize (Zea mays L.) system. This study provided direct evidence that the co-presence of PAHs and heavy metals changed the root physiological functions and the rhizosphere microbial community, which subsequently influenced the fate of the contaminants. Co-contamination at low levels tended to enhance the uptake potential and biodegradation performance of the plant, whereas increased contaminant concentrations produced opposite effects. The co-presence of 1000 mg/kg Cu decreased the abundance of Mycobacterium in the rhizosphere and reduced pyrene degradation by 12%–16%. The presence of 400–750 mg/kg pyrene altered the metabolic processes, molecular binding functions, and catalytic activity of enzymes in the maize roots, thus impeding the phytoextraction of Cu and Cd. Competitive absorption between Cu and Cd was observed for the 800–1000 mg/kg Cu and 50–100 mg/kg Cd co-treatment, in which Cu showed a competitive advantage, enhancing its root-to-shoot translocation. These findings provide important information for the production of safe crops and for the development of phytoremediation technologies.
Afficher plus [+] Moins [-]Exposure to acrylamide induces skeletal developmental toxicity in zebrafish and rat embryos Texte intégral
2021
Zhu, Fanghuan | Wang, Jun | Jiao, Jingjing | Zhang, Yu
Acrylamide is a well-known carcinogen and neurotoxic substance that has been discovered in frying or baking carbohydrate-rich foods and is widely found in soils and groundwater. The purpose of this study was to investigate the adverse effects of exposure to acrylamide on skeletal development. After treatment with acrylamide in zebrafish embryos, the survival and hatching rates decreased, and the body length shortened, with cartilage malformation and a decrease in skeletal area. Exposure to acrylamide in maternal rats during the lactation period disturbed bone mineral density, serum levels of parathyroid hormone, and the expression of skeletal development-related genes in neonates. Exposure to acrylamide in pregnant rats during the pregnancy period decreased the trabecular density and inhibited cartilage formation by delaying the differentiation of osteoblasts and promoting the maturation of osteoclasts in rat embryos. Furthermore, acrylamide intervention downregulated the expression of chondrocyte and osteoblast differentiation-related genes (sox9a, bmp2, col2a1, and runx2), and upregulated the expression of osteoclast marker genes (rankl and mcsf) in zebrafish and rat embryos at different gestational stages. Our results indicated that exposure to acrylamide dysregulated signature gene and protein expression profiles of skeletal development by suppressing the differentiation and maturation of osteoblasts and cartilage matrix and promoting the formation of osteoclasts, and ultimately induced skeletal abnormality in morphology, which brings increasing attention to the intergenerational toxicity of acrylamide via mother-to-child transmission.
Afficher plus [+] Moins [-]Pesticide occurrence and persistence entering recreational lakes in watersheds of varying land uses Texte intégral
2021
Satiroff, Jessica A. | Messer, Tiffany L. | Mittelstet, Aaron R. | Snow, Daniel D.
Currently little is known of newer pesticide classes and their occurrence and persistence in recreational lakes. Therefore, the objectives of this study were to (1) assess average pesticide concentrations and loadings entering recreational lakes in three mixed land use watersheds throughout the growing season, (2) evaluate pesticide persistence longitudinally within the lakes, and (3) perform an ecotoxicity assessment. Six sampling campaigns were conducted at three lakes from April through October 2018 to measure the occurrence and persistence during pre, middle, and post growing season. Polar organic chemical integrative samplers (POCIS) were placed in streams near lake inlets and monthly samples were collected for analysis of twelve pesticides. Additional monthly grab water samples were taken at each POCIS location and at the midpoint and outlet of each lake. All pesticide samples were analyzed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and individual pesticide loading rates were determined. Occurrence and persistence of specific pesticides were significantly different between lakes in varying watershed land uses. Specifically, the recreational lake receiving predominately urban runoff had the highest load of pesticides, likely in the form of biocides, entering the waterbody. Concentrations of imidacloprid exceeded acute and chronic invertebrate levels for 11% and 61% of the sampling periods, respectively, with the recreational lake receiving predominately urban runoff having the most occurrences. Findings from this study are critical for preventing and mitigating potential effects of pesticides, specifically applied as biocides in urban landscapes, from entering and persisting in recreational lakes.
Afficher plus [+] Moins [-]Polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in five East Asian cities: Seasonal characteristics, health risks, and yearly variations Texte intégral
2021
Yang, Lu | Zhang, Lulu | Chen, Lijiang | Han, Chŏng | Akutagawa, Tomoko | Endo, Osamu | Yamauchi, Masahito | Neroda, Andrey | Toriba, Akira | Tang, Ning
Total suspended particulate matter and fine particulate matter were collected in five East Asian cities (Sapporo, Sagamihara, Kirishima, Shenyang, and Vladivostok) during warm and cold periods from 2017 to 2018. Nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-polycyclic aromatic hydrocarbons (NPAHs) were detected by high-performance liquid chromatography with a fluorescence detector. The average concentrations of ∑PAHs and ∑NPAHs differed significantly both temporally and spatially and were the lowest in Kirishima during the warm period (∑PAHs: 0.11 ± 0.06 ng m⁻³; ∑NPAHs: 1.23 ± 0.96 pg m⁻³) and the highest in Shenyang during the cold period (∑PAHs: 49.7 ± 21.8 ng m⁻³; ∑NPAHs: 357 ± 180 pg m⁻³). The average total benzo[a]pyrene-equivalent concentrations were also higher in Shenyang and Vladivostok than in Japanese cities. According to the results of source apportionment, traffic emissions impacted these cities in both the warm and cold periods, whereas coal combustion-generated effects were obvious in Shenyang and Vladivostok during the cold period. Furthermore, PAHs and NPAHs originating from the Asian continent, including Shenyang and Vladivostok, exerted some influence on Japanese cities, especially in the cold period. Compared to Japanese cities and Vladivostok, yearly variations in ∑PAHs and 1-nitropyrene in Shenyang showed that their concentrations were considerably lower than those reported in past studies, indicating the positive effects of air pollutant control policies in China. These results not only describe the current characteristics and yearly variations of PAHs and NPAHs in typical urban cities in East Asia but also, more importantly, reveal that the effects of the East Asian monsoon play an important role in the analysis of atmospheric behaviours of PAHs and NPAHs. Furthermore, this study supports the role of multinational cooperation to promote air pollution control in East Asia.
Afficher plus [+] Moins [-]Covalent bonding of aromatic amine daughter products of 2,4-dinitroanisole (DNAN) with model quinone compounds representing humus via nucleophilic addition Texte intégral
2021
Kadoya, Warren M. | Sierra-Alvarez, Reyes | Jagadish, Bhumasamudram | Wong, Stanley | Abrell, Leif | Mash, Eugene A. | Field, Jim A.
2,4-Dinitroanisole (DNAN) is a component of insensitive munitions (IM), which are replacing traditional explosives due to their improved safety. Incomplete IM combustion releases DNAN onto the soil, where it can leach into the subsurface with rainwater, encounter anoxic conditions, and undergo (a)biotic reduction to aromatic amines 2-methoxy-5-nitroaniline (MENA), 4-methoxy-3-nitroaniline (iMENA, isomer of MENA), and 2,4-diaminoanisole (DAAN). We report here studies of nucleophilic addition mechanisms that may account for the sequestration of aromatic amine daughter products of DNAN into soil organic matter (humus), effectively removing these toxic compounds from the aqueous environment. Because quinones are important moieties in humus, we incubated MENA, iMENA, DAAN, and related analogs with model compounds 1,4-benzoquinone and 2,3-dimethyl-1,4-benzoquinone under anoxic conditions. Mass spectrometry and ultra-high performance liquid chromatography revealed that the aromatic amines had covalently bonded to either carbonyl carbons or ring carbons β to carbonyl carbons of the quinones, producing a mixture of imines and Michael adducts, respectively. These products formed rapidly and accumulated in the one-to four-day incubations. Nucleophilic addition reactions, which do not require catalysis or oxic conditions, are proposed as a mechanism resulting in the binding of DNAN to soil observed in previous studies. To remediate sites contaminated with DNAN or other nitroaromatics, reducing conditions and humus amendments may promote their immobilization into the soil matrix.
Afficher plus [+] Moins [-]Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter Texte intégral
2021
Li, Meng | Zhang, Xiangwei | Yi, Kexin | He, Lei | Han, Peng | Tong, Meiping
Natural colloids such as clays and natural organic matter (NOM) are universally present in environments, which could interact with microplastics (MPs) and thus alter the fate and transport of MPs in porous media. The co-effects of clays and NOM on MPs transport in saturated porous media were systematically explored at both low and high ionic strength (IS) conditions. Specifically, bentonite and humic acid (HA) were employed as representative clays and NOM. 5 mM NaCl and 1 mM CaCl₂ solutions were used as low IS conditions, while 25 mM NaCl and 5 mM CaCl₂ solutions were employed as high IS conditions. We found that formation of MPs-bentonite heteroaggregates had great effects on MPs transport under different conditions. Without HA, the small MPs-bentonite heteroaggregates formed under low IS increased MPs transport via serving as mobile carriers, while larger MPs-bentonite heteroaggregates formed at high IS led to the decreased MPs mobility. When both HA and bentonite were copresent in MPs suspension, we found that HA could inhibit the formation of larger sized MPs-bentonite heteroaggregates. Particularly, when the two types of natural colloids copresent in MPs suspensions, MPs transport behaviors were similar to those with only bentonite present in MPs suspensions at low IS, while MPs transport was greatly increased at high IS comparing with those only with bentonite in suspensions. Clearly, without HA in suspensions, bentonite played the dominant role on MPs transport under all examined conditions concerned in this study. Instead, when both HA and bentonite copresent in MPs suspensions, MPs transport was mainly controlled by bentonite at low IS, while both bentonite and HA had major contributions at high IS. The results showed that under solution conditions concerned in present study, MPs mobility in porous media would be greatly affected (either enhanced or inhibited) by the two types of natural colloids.
Afficher plus [+] Moins [-]Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study Texte intégral
2021
Nigamatzyanova, Läysän | Fakhrullin, Rawil
Microplastics pollution is a serious ecological threat, severely affecting environments and human health. Tackling microplastics pollution requires an effective methodology to detect minute polymer particles in environmental samples and organisms. Here were report a novel methodology to visualise and identify nanoscale (down to 100 nm) and microscale synthetic commercially-available uniform spherical polymer particles using dark-field hyperspectral microscopy in visible-near infrared (400–1000 nm) wavelength range. Polystyrene particles with diameters between 100 nm–1 μm, polymethacrylate 1 μm and melamine formaldehyde 2 μm microspheres suspended in pure water samples were effectively imaged and chemically identified based on spectral signatures and image-assisted analysis. We succeeded in visualisation and spectral identification of pure and mixed nano- and microplastics in vivo employing optically-transparent Caenorhabditis elegans nematodes as a model to demonstrate the ingestion and tissue distribution of microplastics. As we demonstrate here, dark-field hyperspectral microscopy is capable for differentiating between chemically-different microplastics confined within live invertebrate intestines. Moreover, this optical technology allows for quantitative identification of microplastics ingested by nematodes. We believe that this label-free non-destructive methodology will find numerous applications in environmental nano- and microplastics detection and quantification, investigation of their biodistribution in tissues and organs and nanotoxicology.
Afficher plus [+] Moins [-]