Affiner votre recherche
Résultats 1961-1970 de 7,995
Identification of a novel function of a component in the jasmonate signaling pathway for intensive pesticide degradation in rice and environment through an epigenetic mechanism Texte intégral
2021
Ma, Li Ya | Zhai, Xiao Yan | Qiao, Yu Xin | Zhang, Ai Ping | Zhang, Nan | Liu, Jintong | Yang, Hong
Developing a biotechnical system with rapid degradation of pesticide is critical for reducing environmental, food security and health risks. Here, we investigated a novel epigenetic mechanism responsible for the degradation of the pesticide atrazine (ATZ) in rice crops mediated by the key component CORONATINE INSENSITIVE 1a (OsCOI1a) in the jasmonate-signaling pathway. OsCOI1a protein was localized to the nucleus and strongly induced by ATZ exposure. Overexpression of OsCOI1a (OE) significantly conferred resistance to ATZ toxicity, leading to the improved growth and reduced ATZ accumulation (particularly in grains) in rice crops. HPLC/Q-TOF-MS/MS analysis revealed increased ATZ-degraded products in the OE plants, suggesting the occurrence of vigorous ATZ catabolism. Bisulfite-sequencing and chromatin immunoprecipitation assays showed that ATZ exposure drastically reduced DNA methylation at CpG context and histone H3K9me2 marks in the upstream of OsCOI1a. The causal relationships between the DNA demethylation (hypomethylatioin), OsCOI1a expression and subsequent detoxification and degradation of ATZ in rice and environment were well established by several lines of biological, genetic and chemical evidence. Our work uncovered a novel regulatory mechanism implicated in the defense linked to the epigenetic modification and jasmonate signaling pathway. It also provided a modus operandi that can be used for metabolic engineering of rice to minimize amounts of ATZ in the crop and environment.
Afficher plus [+] Moins [-]Environmental exposure to 17β-trenbolone during adolescence inhibits social interaction in male mice Texte intégral
2021
Zhang, Shaozhi | Jiao, Zihao | Zhao, Xin | Sun, Mingzhu | Feng, Xizeng
Puberty is a critical period for growth and development. This period is sensitive to external stimuli, which ultimately affects the development of nerves and the formation of social behaviour. 17β-Trenbolone (17β-TBOH) is an endocrine disrupting chemicals (EDCs), which had been widely reported in aquatic vertebrates. But there is little known about the effects of 17β-TBOH on mammals, especially on adolescent neurodevelopment. In this study, we found that 17β-TBOH acute 1 h exposure can cause the activation of the dopamine circuit in pubertal male balb/c mice. At present, there is little known about the effects of puberty exposure of endocrine disruptors on these neurons/nerve pathways. Through a series of behavioural tests, exposure to 80 μgkg⁻¹ d⁻¹ of 17β-TBOH during adolescence increased the anxiety-like behaviour of mice and reduced the control of wheel-running behaviour and the response of social interaction behaviour. The results of TH immunofluorescence staining showed that exposure to 17β-TBOH reduced dopamine axon growth in the medial prefrontal cortex (mPFC). In addition, the results of real-time PCR showed that exposure to 17β-TBOH not only down-regulated the expression of dopamine axon development genes, but also affected the balance of excitatory/inhibitory signals in mPFC. In this research, we reveal the effects of 17β-TBOH exposure during adolescence on mammalian behaviour and neurodevelopment, and provide a reference for studying the origin of adolescent diseases.
Afficher plus [+] Moins [-]FeS2/carbon felt as an efficient electro-Fenton cathode for carbamazepine degradation and detoxification: In-depth discussion of reaction contribution and empirical kinetic model Texte intégral
2021
Cui, Tingyu | Xiao, Zhihui | Wang, Zhenbei | Liu, Chao | Song, Zilong | Wang, Yiping | Zhang, Yuting | Li, Ruoyu | Xu, Bingbing | Qi, Fei | Ikhlaq, Amir
Carbamazepine (CBZ) decay by electro-Fenton (EF) oxidation using a novel FeS₂/carbon felt (CF) cathode, instead of a soluble iron salt, was studied with the aim to accelerate the reaction between H₂O₂ and ferrous ions, which helps to produce more hydroxyl radicals (•OH) and eliminate iron sludge. First, fabricated FeS₂ and its derived cathode were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Anodes were then screened, with DSA (Ti/IrO₂–RuO₂) showing the best performance under EF oxidation regarding CBZ degradation and electrochemical characterization. Several operating parameters of this EF process, such as FeS₂ loading, current density, gap between electrodes (GBE), initial [CBZ], and electrolyte type, were also investigated. Accordingly, a nonconsecutive empirical kinetic model was established to predict changes in CBZ concentration under the given operational parameters. The contribution of different oxidation types to the EF process was calculated using kinetic analysis and quenching experiments to verify the role of the FeS₂-modified cathode. The reaction contributions of anodic oxidation (AO), H₂O₂ electrolysis (EP), and EF oxidation to CBZ removal were 12.81%, 7.41%, and 79.77%, respectively. The •OH exposure of EP and EF oxidation was calculated, confirming that •OH exposure was approximately 22.45-fold higher using FeS₂-modified CF. Finally, the 19 intermediates formed by CBZ degradation were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Accordingly, four CBZ degradation pathways were proposed. ECOSAR software was used to assess the ecotoxicity of intermediates toward fish, daphnia, and green algae, showing that this novel EF oxidation process showed good toxicity reduction performance. A prolonged EF retention time was proposed to be necessary to obtain clean and safe water, even if the targeted compound was removed at an earlier time.
Afficher plus [+] Moins [-]Outdoor air pollution exposure and inter-relation of global cognitive performance and emotional distress in older women Texte intégral
2021
Petkus, Andrew J. | Wang, Xinhui | Beavers, Daniel P. | Chui, Helena C. | Espeland, Mark A. | Gatz, Margaret | Gruenewald, Tara | Kaufman, Joel D. | Manson, JoAnn E. | Resnick, Susan M. | Stewart, James D. | Wellenius, Gregory A. | Whitsel, Eric A. | Widaman, Keith | Younan, Diana | Chen, Jiu-Chiuan
The interrelationships among long-term ambient air pollution exposure, emotional distress and cognitive decline in older adulthood remain unclear. Long-term exposure may impact cognitive performance and subsequently impact emotional health. Conversely, exposure may initially be associated with emotional distress followed by declines in cognitive performance. Here we tested the inter-relationship between global cognitive ability, emotional distress, and exposure to PM₂.₅ (particulate matter with aerodynamic diameter <2.5 μm) and NO₂ (nitrogen dioxide) in 6118 older women (aged 70.6 ± 3.8 years) from the Women’s Health Initiative Memory Study. Annual exposure to PM₂.₅ (interquartile range [IQR] = 3.37 μg/m³) and NO₂ (IQR = 9.00 ppb) was estimated at the participant’s residence using regionalized national universal kriging models and averaged over the 3-year period before the baseline assessment. Using structural equation mediation models, a latent factor capturing emotional distress was constructed using item-level data from the 6-item Center for Epidemiological Studies Depression Scale and the Short Form Health Survey Emotional Well-Being scale at baseline and one-year follow-up. Trajectories of global cognitive performance, assessed by the Modified-Mini Mental State Examination (3MS) annually up to 12 years, were estimated. All effects reported were adjusted for important confounders. Increases in PM₂.₅ (β = -0.144 per IQR; 95% CI = −0.261; −0.028) and NO₂ (β = −0.157 per IQR; 95% CI = −0.291; −0.022) were associated with lower initial 3MS performance. Lower 3MS performance was associated with increased emotional distress (β = −0.008; 95% CI = −0.015; −0.002) over the subsequent year. Significant indirect effect of both exposures on increases in emotional distress mediated by exposure effects on worse global cognitive performance were present. No statistically significant indirect associations were found between exposures and 3MS trajectories putatively mediated by baseline emotional distress. Our study findings support cognitive aging processes as a mediator of the association between PM₂.₅ and NO₂ exposure and emotional distress in later-life.
Afficher plus [+] Moins [-]Tissue distribution and health risk of trace elements in East Asian finless porpoises Texte intégral
2021
Tian, Jiashen | Gan, Zhiwei | Sanganyado, Edmond | Lu, Zhichuang | Wu, Jinhao | Han, Jiabo | Liu, Wenhua
We investigated the tissue distribution, trophic transfer, and ecological risk of 13 trace elements in 26 East Asian finless porpoises (Neophocaena asiaeorientalis sunameri), an endangered species found in the Liaodong Bay and the north Yellow Sea. All the investigated trace elements were detected in the tissue and food web of the East Asian finless porpoises. The concentrations of the potentially toxic elements were 2.37 × 10⁻⁵ – 754 mg kg⁻¹ dry weight (dw) in stranded porpoises and 0.01–159 mg kg⁻¹ dw in their food web. Tissue-specific distribution of the trace elements generally ranked as: liver > kidney > heart > lung > muscle. Zn was the dominant contaminant in the five investigated tissues. Significant positive correlations were found between body length or age and some trace elements, especially Cd. Adults (≥2 years old) presented higher concentrations of most of the trace elements than juveniles (<2 years old). Sex-dependent distribution of the trace elements was insignificant except for Mn, Ni, and Zn in muscle and renal tissue. As, Cu, Mn, Ni, Pb, and V biodiluted across the East Asian finless porpoise food web while Zn biomagnified. However, Hg, Cd, Co, Cr, Se, and Sn did not exhibit apparent trophic transfer trends. Overall, ecological risk assessment of trace elements in East Asian finless porpoises suggested that greater attention should be given to Hg, As, Cd, and Se.
Afficher plus [+] Moins [-]Evaluation of the combined effect of elevated temperature and cadmium toxicity on Daphnia magna using a simplified DEBtox model Texte intégral
2021
Na, Joorim | Kim, Yongeun | Song, Jinyoung | Shim, Taeyong | Cho, Kijong | Jung, Jinho
Thermal discharge and heatwaves under climate change may increase water temperature. In this study, the individual and combined effect of elevated temperature and cadmium (Cd) toxicity on somatic growth and reproduction of Daphnia magna was evaluated using a simplified dynamic energy budget model (DEBtox). The model predicted that the maximum body length (Lₘ) would be shorter (3.705 mm) at an elevated temperature of 25 °C than at 20 °C (3.974 mm), whereas the maximum reproduction rate (R˙m) would be higher at 25 °C (5.735) than at 20 °C (5.591). The somatic growth and reproduction of D. magna were significantly (p < 0.05) reduced with increasing Cd concentrations, and the reduction was greater at 25 than at 20 °C. Potentiation of Cd toxicity by elevated temperature was correctly simulated by assuming four toxicological modes of action influencing assimilation, somatic maintenance and growth, and reproduction. Overall, the population growth rate of D. magna was expected to decrease linearly with increasing Cd concentrations, and the decrease was expected to be higher at 25 than at 20 °C. These findings suggest a significant ecological risk of toxic metals at elevated temperature, with a mechanistic interpretation of the potentiation effect using a DEBtox modeling approach.
Afficher plus [+] Moins [-]Effects of seawater scrubbing on a microplanktonic community during a summer-bloom in the Baltic Sea Texte intégral
2021
Ytreberg, Erik | Karlberg, Maria | Hassellöv, Ida-Maja | Hedblom, Mikael | Nylund, Amanda T. | Salo, Kent | Imberg, Henrik | Turner, David | Tripp, Lucy | Yong, Joanne | Wulff, Angela
The International Maritime Organization (IMO) has gradually applied stricter regulations on the maximum sulphur content permitted in marine fuels and from January 1, 2020, the global fuel sulphur limit was reduced from 3.5% to 0.5%. An attractive option for shipowners is to install exhaust gas cleaning systems, also known as scrubbers, and continue to use high sulphur fuel oil. In the scrubber, the exhausts are led through a fine spray of water, in which sulphur oxides are easily dissolved. The process results in large volumes of acidic discharge water, but while regulations are focused on sulphur oxides removal and acidification, other pollutants e.g. polycyclic aromatic hydrocarbons, metals and nitrogen oxides can be transferred from the exhausts to the washwater and discharged to the marine environment. The aim of the current study was to investigate how different treatments of scrubber discharge water (1, 3 and 10%) affect a natural Baltic Sea summer microplanktonic community. To resolve potential contribution of acidification from the total effect of the scrubber discharge water, “pH controls” were included where the pH of natural sea water was reduced to match the scrubber treatments. Biological effects (e.g. microplankton species composition, biovolume and primary productivity) and chemical parameters (e.g. pH and alkalinity) were monitored and analysed during 14 days of exposure. Significant effects were observed in the 3% scrubber treatment, with more than 20% increase in total biovolume of microplankton compared to the control group, and an even greater effect in the 10% scrubber treatment. Group-specific impacts were recorded where diatoms, flagellates incertae sedis, chlorophytes and ciliates increased in biovolume with increasing concentrations of scrubber water while no effect was recorded for cyanobacteria. In contrast, these effects was not observed in the “pH controls”, a suggestion that other parameters/stressors in the scrubber water were responsible for the observed effects.
Afficher plus [+] Moins [-]Nitrogen flows associated with food production and consumption system of Shanghai Texte intégral
2021
Liao, Chengsong | Xia, Yuling | Wu, Dianming
The release of reactive nitrogen (Nᵣ) from food production and consumption constitute the primary source of nitrogen pollution. However, nitrogen flows and the driving factors of food chain of Shanghai, China have not been previously studied. Here, we used a substance flow analysis model to analyze the changes in Nᵣ inputs and outputs in agricultural production, livestock and poultry farming, and food consumption related to the Shanghai food chain between 2000 and 2018. The driving forces of Nᵣ inputs, Nᵣ use efficiency, and Nᵣ surpluses/deficits in the food production and consumption system were also investigated. The results indicated that the main sources of Nᵣ input in the food production and consumption system were nitrogen fertilizers, livestock and poultry feed from external sources, and plant-based foods, which accounted for 36.28–59.45% of Nᵣ input in agricultural production, 37.32–76.57% of Nᵣ input in livestock and poultry farming, and 35.38–59.37% of Nᵣ input in food consumption, respectively. The main forms of Nᵣ outputs were surplus nitrogen in the soil, excretal nitrogen from livestock and poultry animals, and excretal nitrogen from humans, which accounted for 38.2–48.89% of Nᵣ output in agricultural production, 36.78–55.18% of Nᵣ output in livestock and poultry farming, and 85.36% of Nᵣ output in food consumption, respectively. From 2000 to 2018, the Nᵣ inputs per unit area from agricultural production decreased at a rate of 20.42% before 2012, and then increased at a rate of 5.72%. Moreover, the Nᵣ use efficiency of agricultural production component of Shanghai was at a low level, only 18.43–27.6%. Cultivation area of crops was the main driving forces of the Nᵣ input to food production and consumption system. These results provide essential data for controlling nitrogen pollution caused by Shanghai food production and consumption, which can serve as a reference for administrative agencies in formulating policies.
Afficher plus [+] Moins [-]RETRACTED: Cytotoxicity and genotoxicity evaluation of polystyrene microplastics on Vicia faba roots Texte intégral
2021
Lu, Yin | Ma, Qin | Xu, Xiaolu | Yu, Zhefu | Guo, Tianjiao | Wu, Yangkai
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).This article has been retracted at the request of the Editors and Corresponding Author.The authors have plagiarized part of a paper that had already appeared in Environmental and Experimental Botany, 179 (2020) 104227, https://doi.org/10.1016/j.envexpbot.2020.104227. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Afficher plus [+] Moins [-]Persistent pollutants exceed toxic thresholds in a freshwater top predator decades after legislative control Texte intégral
2021
Kean, E.F. | Shore, R.F. | Scholey, G. | Strachan, R. | Chadwick, E.A.
Declining emissions of persistent organic pollutants (POPs), subject to international control under the Stockholm convention, are not consistently reflected in biotic samples. To assess spatial and temporal variation in organochlorine pesticides and PCBs in UK freshwaters, we analysed tissues of a sentinel predator, the Eurasian otter, Lutra lutra between 1992 and 2009. Past declines in otter populations have been linked to POPs and it is unclear whether otter recovery is hampered in any areas by their persistence. PCBs, DDT (and derivatives), dieldrin and HCB were detected in over 80% of 755 otter livers sampled. Concentrations of ∑PCB, ∑DDT and dieldrin in otter livers declined across the UK, but there was no significant time trend for ∑PCB-TEQ (WHO toxic equivalency, Van den Berg et al., 2006) or HCB. In general, higher concentrations were found in the midlands and eastern regions, and lowest concentrations in western regions. Concentrations of PCBs and HCB in otters increased near the coast, potentially reflecting higher pollutant levels in estuarine systems. Decades after legislative controls, concentrations of these legacy pollutants still pose a risk to otters and other freshwater predators, with spatially widespread exceedance of thresholds above which reproduction or survival has been reduced in related species.
Afficher plus [+] Moins [-]