Affiner votre recherche
Résultats 21-30 de 131
Macro- and micro-plastic accumulation in soils under different intensive farming systems : A case study in Quzhou county, the North China Plain Texte intégral
2025
Zhang, Hanyue | Yang, Xiaomei | Wang, Kai | Cui, Jixiao | Ritsema, Coen J. | Yan, Changrong | Liu, Xuejun | Geissen, Violette
The macroplastics (MaPs) and microplastics (MiPs) polluting agricultural soils raise great concerns. Unfortunately, scientists know little about the occurrence of MaPs/MiPs in soil among different farming systems. In this study, we analyzed MaPs/MiPs in soils (0–30 cm) collected from six different farming systems (wheat-maize rotations, cotton, vegetables, permanent orchards, greenhouses with and without mulching) in Quzhou county, the North China Plain, by using fluorescence microscope and micro-Fourier transform infrared spectroscopy. The results showed that the abundance of MaPs and MiPs ranged from 0.2 to 46.8 kg ha−1, and 4.1 × 103–3.7 × 104 items kg−1, respectively. The prominent colors of the MaPs were white and black. The predominant shape, size and chemical composition of soil MiPs were fragments (45–62%), <1 mm (98–99%), and polyethylene (38–43%), respectively. MaPs were mainly detected in the 0–10 cm soil layer. MiP abundance in the 0–10 cm soil layer was significantly higher than that in the 20–30 cm soil layers among different farming systems, except for the fields with wheat-maize rotations and permanent orchards (p < 0.05). Overall, cotton fields showed the highest MaP and MiP abundance, followed by vegetable fields and orchards. Redundancy analysis revealed that tillage practices and plastic film management greatly influence the size distribution of MiPs. A strong negative correlation between large-sized plastic fractions (0.2–1 mm) and tillage frequency was tested while the years of application of plastic films and the abundance of plastic residues showed a strong positive correlation with small-sized plastic fractions (<0.2 mm). Our findings conclude that agricultural mulch films are an important source of MaPs and MiPs in agricultural soil and distributions are strongly influenced by agricultural management practices and farming systems. Further studies should take farming systems and farming practices into account, thereby exploring the potential mechanisms of plastic fragmentation and granularization in agricultural soil.
Afficher plus [+] Moins [-]Modelling Escherichia coli concentrations : 45.6 %–78.1 % of China's rivers show poor microbial water quality Texte intégral
2025
Mei, Songtao | Wang, Kai | Schmitt, Heike | Hofstra, Nynke
Water quality is under threat due to the presence of pathogenic and antibiotic-resistant bacteria. Escherichia coli (E. coli) serves as an indicator of faecal contamination and the potential presence of other harmful pathogens. Understanding E. coli concentrations helps in assessing the overall health risks associated with waterborne diseases and developing effective water management strategies. Therefore, we developed the first large-scale model, GloWPa-Ecoli C1 to simulate E. coli loads and concentrations in rivers and apply this model to China. The model provides the first comprehensive overview of microbial water quality across China's rivers. The model simulates E. coli concentrations in 2020 to range from 10−1.2 to 106.3 CFU/L, with 45.6 %–78.1 % of rivers exhibiting poor microbial water quality. Major hotspots of E. coli pollution are Haihe, Huaihe and Pearl River Basins. Direct discharge of human faecal waste contributes 80.2 % of the total E. coli load, while directly discharged livestock waste accounts for 13.1 %. To mitigate E. coli pollution in rivers in China, we recommend increasing human faecal waste collection rates, expanding wastewater treatment plant (WWTP) coverage, phasing out primary treatment WWTPs and eliminating direct livestock faecal waste discharge, particularly from smallholder farms. The study underscores the urgent need to improve microbial water quality in China's rivers. The findings provide actionable insights to inform policy development aimed at safeguarding water quality and public health. Furthermore, the modelling approach is applicable to other regions and microorganisms, offering a foundation for developing models to address antibiotic-resistant bacteria and other emerging water quality challenges.
Afficher plus [+] Moins [-]A brief review on models for birds exposed to chemicals Texte intégral
2025
Lamonica, Dominique | Charvy, Lison | Kuo, Dave | Fritsch, Clémentine | Coeurdassier, Michaël | Berny, Philippe | Charles, Sandrine | Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM) | Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA) | National Taiwan University [Taiwan] (NTU) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS) | Interactions Cellules Environnement - UR (ICE) ; VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)
International audience | “A Who’s Who of pesticides is therefore of concern to us all. If we are going to live so intimately with these chemicals eating and drinking them, taking them into the very marrow of our bones - we had better know something about their nature and their power.”—Rachel Carson, Silent Spring. In her day, Rachel Carson was right: plant protection products (PPP), like all the other chemical substances that humans increasingly release into the environment without further precaution, are among our worst enemies today (Bruhl and Zaller, 2019; Naidu et al., 2021; Tang et al., 2021; Topping et al., 2020). All compartments of the biosphere, air, soil and water, are potential reservoirs within which all species that live there are impaired. Birds are particularly concerned: PPP are recognized as a factor in the decline of their abundance and diversity predominantly in agricultural landscapes. Due to the restrictions on vertebrates testing, in silico-based approaches are an ideal choice alternative given input data are available. This is where the problem lies as we will illustrate in this paper. We performed an extensive literature search covering a long period of time, a wide diversity of bird species, a large range of chemical substances, and as many model types as possible to encompass all our future need to improve environmental risk assessment of chemicals for birds. In the end, we show that poultry species exposed to pesticides are the most studied at the individual level with physiologically based toxicokinetic models. To go beyond, with more species, more chemical types, over several levels of biological organization, we show that observed data are crucially missing (Gilbert, 2011). As a consequence, improving existing models or developing new ones could be like climbing Everest if no additional data can be gathered, especially on chemical effects and toxicodynamic aspects.
Afficher plus [+] Moins [-]Effects of nonionic surfactants on life history traits of Drosophila melanogaster Texte intégral
2025
Richard, Chloé M.C. | Renault, David | Wallart, Violette | Denis, Béatrice | Tarapacki, Pénélope | Marion-Poll, Frédéric | Colinet, H | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Evolution, génomes, comportement et écologie (EGCE) ; Institut de Recherche pour le Développement (IRD)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) | The project received financial support from CNRS through the MITI interdisciplinary programs and its exploratory research program (Project PLASTIBIO). The work was also supported by ANSES and ADEME (Projects PLASTICIDE and PLASTIBIO) through the French national research program for environmental and occupational health (PNR EST). The authors thank Emmanuel Le Rouzic and EXperimental ECOLogy platform (ECOLEX) of ECOBIO for their help in the experiments.
International audience | Surfactants are used for a variety of applications such as emulsifiers, solubilizers, or foaming agents. Their intensive production and use in pharmaceutical, cosmetic and agricultural products have resulted in their continuous discharge in the environment, especially via wastewaters. Surfactants have become a threat to living organisms as they interact with, and disrupt, cell membranes and macromolecules. Their effects have mainly been studied in aquatic species; however, terrestrial organisms are also threatened by these emerging contaminants. This study investigates the effects of two widely used nonionic surfactants, Tween-20 and Triton X-100, on key traits of larvae and adults of the fruit fly Drosophila melanogaster. We assessed the toxicity of the two surfactants on viability, development time, body size and food intake of the flies. The results revealed that both surfactants induced toxic effects on the drosophila flies leading to decreased viability, delayed development and lowered food consumption at the highest tested concentrations. Both surfactants proved to be toxic to flies, and, for all tested traits, Triton X-100 appeared more toxic than Tween-20. Our results might extend to other invertebrates. The widespread use of these substances, which then end up in the environment, should be regulated to mitigate their impacts on biodiversity and ecosystems.
Afficher plus [+] Moins [-]Characterizing environmental contamination by plant protection products along the land-to-sea continuum:a focus on France and French overseas territories Texte intégral
2025
Margoum, Christelle | Bedos, Carole | Munaron, Dominique | Nélieu, Sylvie | Achard, Anne-Laure | Pesce, Stéphane | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | MARine Biodiversity Exploitation and Conservation - MARBEC (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | Département Ecosystèmes aquatiques, ressources en eau et risques - INRAE (AQUA) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Characterizing environmental contamination by plant protection products along the land-to-sea continuum:a focus on France and French overseas territories Texte intégral
2025
Margoum, Christelle | Bedos, Carole | Munaron, Dominique | Nélieu, Sylvie | Achard, Anne-Laure | Pesce, Stéphane | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | MARine Biodiversity Exploitation and Conservation - MARBEC (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | Département Ecosystèmes aquatiques, ressources en eau et risques - INRAE (AQUA) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Environmental compartments are contaminated by a broad spectrum of plant protection products (PPPs) that are currently widely used in agriculture or, for some of them, whose use was banned many years ago. The aim of this study is to draw up an overview of the levels of contamination of soils, continental aquatic environments, seawaters and atmosphere by organic PPPs in France and the French overseas territories, based on data from the scientific publications and the grey literature. It is difficult to establish an exhaustive picture of the overall contamination of the environment because the various compartments monitored, the monitoring frequencies, the duration of the studies and the lists of substances are not the same. Of the 33 PPPs most often recorded at high concentration levels in at least one compartment, 5 are insecticides, 9 are fungicides, 15 are herbicides and 4 are transformation products. The PPP contamination of the environment shows generally a seasonal variation according to crop cycles. On a pluriannual scale, the contamination trends are linked to the level of use driven by the pest pressure, and especially to the ban of PPP. Overall, the quality of the data acquired has been improved thanks to new, more integrative sampling strategies and broad-spectrum analysis methods that make it possible to incorporate the search for emerging contaminants such as PPP transformation products. Taking into account additional information (such as the quantities applied, agricultural practices, meteorological conditions, the properties of PPPs and environmental conditions) combined with modelling tools will make it possible to better assess and understand the fate and transport of PPPs in the environment, inter-compartment transfers and to identify their potential impacts. Simultaneous monitoring of all environmental compartments as well as biota in selected and limited relevant areas would also help in this assessment.
Afficher plus [+] Moins [-]Characterizing environmental contamination by plant protection products along the land-to-sea continuum:a focus on France and French overseas territories Texte intégral
2025
Margoum, Christelle | Bedos, Carole | Munaron, Dominique | Nélieu, Sylvie | Achard, Anne-laure | Pesce, Stéphane
Environmental compartments are contaminated by a broad spectrum of plant protection products (PPPs) that are currently widely used in agriculture or, for some of them, whose use was banned many years ago. The aim of this study is to draw up an overview of the levels of contamination of soils, continental aquatic environments, seawaters and atmosphere by organic PPPs in France and the French overseas territories, based on data from the scientific publications and the grey literature. It is difficult to establish an exhaustive picture of the overall contamination of the environment because the various compartments monitored, the monitoring frequencies, the duration of the studies and the lists of substances are not the same. Of the 33 PPPs most often recorded at high concentration levels in at least one compartment, 5 are insecticides, 9 are fungicides, 15 are herbicides and 4 are transformation products. The PPP contamination of the environment shows generally a seasonal variation according to crop cycles. On a pluriannual scale, the contamination trends are linked to the level of use driven by the pest pressure, and especially to the ban of PPP. Overall, the quality of the data acquired has been improved thanks to new, more integrative sampling strategies and broad-spectrum analysis methods that make it possible to incorporate the search for emerging contaminants such as PPP transformation products. Taking into account additional information (such as the quantities applied, agricultural practices, meteorological conditions, the properties of PPPs and environmental conditions) combined with modelling tools will make it possible to better assess and understand the fate and transport of PPPs in the environment, inter-compartment transfers and to identify their potential impacts. Simultaneous monitoring of all environmental compartments as well as biota in selected and limited relevant areas would also help in this assessment.
Afficher plus [+] Moins [-]Estimation of electric vehicle lithium-ion battery scrap towards recycling facilities in the EU Texte intégral
2025
Shqairat, Alaa | Marange, Pascale | Chagnes, Alexandre | Liarte, Sébastien | Bureau d'Économie Théorique et Appliquée (BETA) ; AgroParisTech-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Centre de Recherche en Automatique de Nancy (CRAN) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | GeoRessources ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
International audience | The increasing demand for electric vehicles (EVs) in Europe, coupled with legislative efforts to reduce combustion engine vehicles, has significantly spurred the manufacturing of lithium-ion batteries (LIBs). However, this growth has led to a rapid rise in EV-LIB scrap, from both retired batteries and manufacturing processes, a factor insufficiently addressed in prior research. Our study tackles this issue by assessing the harmonisation of industry projects and examining the recycling facilities' readiness to handle these dual waste streams. We methodically estimate the registrations of new EVs and their anticipated scrap volume, and then project future LIB manufacturing scrap in the EU. Therefore, we assess current and future recycling capacities and evaluate the balance between scrap influx and recycling readiness by 2030. Our findings indicate that the EU is facing a significant recycling challenge. By 2030, about 930 kilotonnes of scrap from the EV-LIB industry will need recycling under the baseline scenario. Although current capacities can handle today's scrap volumes, the disparity between rapidly expanding manufacturing and lagging recycling facilities will result in a shortfall in a few years. Current plans suggest EU recycling facilities will have a capacity of about 785 kilotonnes annually by 2030, which falls short of the dual scrap streams. This research underscores the need for a strategic approach to scale up recycling infrastructure and technology, to emphasise the importance of responsible manufacturing, and to align with the EU's sustainability goals and the growing demands of the EV industry.
Afficher plus [+] Moins [-]Health Risks Status for Two Seaweeds of Economic Interest in Northwest Africa Texte intégral
2025
Bousso, Ndeye Coumba | Brehmer, Patrice | Kane, Cheikhou | Quack, Birgit | Ndiaye, Waly | Diadhiou, Hamet Diaw | Diedhiou, Fulgence | Waeles, Mathieu
Seaweeds hold significant potential for human nutrition due to its high content of essential minerals and trace elements. In Africa, the development of the blue economy promotes their sustainable exploitation. However, harmful elements such as arsenic (As), lead (Pb), and cadmium (Cd) can accumulate in seaweeds, posing potential health risks upon consumption. Meristotheca senegalensis and Hypnea musciformis, two seaweeds of economic interest in Senegal, were collected in various locations, and their concentrations of essential nutrients, heavy metals, and transition metals were analyzed. Notably, cadmium levels in all samples exceeded established toxicity thresholds. A health risk assessment was performed, evaluating non-carcinogenic and carcinogenic risks through estimated daily intakes, target hazard quotients, hazard indexes, and carcinogenic risks. For adults, a low daily intake of seaweed (0.1 g day-1) posed no significant health risk over long-term exposure. High (8 g day-1) and medium (4 g day-1) daily intake levels posed no risk for adults and children, respectively, over 6-month exposure. In addition, seaweed represents a valuable iron source for preventing deficiency in Senegalese populations. Such intake levels could be incorporated into agro-food products for trace element enrichment. Nevertheless, for children, site-specific selection is critical to avoid carcinogenic risks over prolonged exposure. Seaweed offers a valuable opportunity for addressing food and nutrition security as well as promoting economic growth within Africa’s blue economy. However, careful scientific evaluation, particularly regarding site selection, is essential to ensure safe and sustainable uses, especially in countries like those in Africa, where marine pollution monitoring is often limited.
Afficher plus [+] Moins [-]A year-long field study of buried plastics reveals underestimation of plastic pollution on Hawaiian beaches Texte intégral
2025
Delorme, Astrid | Poirion, Olivier B. | Lebreton, Laurent | Le Gac, Pierre Yves | Kāne, Kimeona | Royer, Sarah Jeanne
Global models estimate that two-thirds of floating ocean plastic has accumulated in coastal areas since the 1950s, with Hawaiʻi's windward shores particularly vulnerable due to their proximity to the North Pacific Garbage Patch. Our quarterly surveys revealed that 91% of recovered plastic particles were buried below the surface (deeper than 2 cm), with most particles being small fragments (93%) ranging from 5.4 to 7.9 mm. This study offers new insights into subsurface plastic pollution, exposing a previously hidden vertical distribution. We observed significant variations in plastic abundance across depths, beaches, and sampling periods, along with a positive correlation between particle size and sand grain size. Additionally, through reconciliation science, we critically reflect on the cultural impacts of our research, emphasizing the importance of aligning plastic pollution studies with local community values and environmental stewardship.
Afficher plus [+] Moins [-]Effects of polyethylene and poly (butyleneadipate-co-terephthalate) contamination on soil respiration and carbon sequestration Texte intégral
2025
Liu, Mengyu | Yu, Yao | Liu, Ying | Xue, Sha | Tang, Darrell W.S. | Yang, Xiaomei
To address plastic pollution in agricultural soils due to polyethylene plastic film mulch used, biodegradable film is being studied as a promising alternative material for sustainable agriculture. However, the impact of biodegradable and polyethylene microplastics on soil carbon remains unclear. The field experiment was conducted with Poly (butyleneadipate-co-terephthalate) debris (PBAT-D, 0.5–2 cm), low-density polyethylene debris (LDPE-D, 0.5–2 cm) and microplastic (LDPE-Mi, 500–1000 μm) contaminated soil (0% (control), 0.05%, 0.1%, 0.2%, 0.5%, 1% and 2% w:w) planted with soybean, to explore potential impacts on soil respiration (Rs), soil organic carbon (SOC) and carbon fractions (microbial biomass carbon (MBC), dissolved organic carbon (DOC), easily oxidizable carbon (EOC), particulate organic carbon (POC), mineral-associated organic carbon (MAOC)), and C-enzymes (β-glucosidase, β-xylosidase, cellobiohydrolase). Results showed that PBAT-D, LDPE-D and LDPE-Mi significantly inhibited Rs compared with the control during the flowering and harvesting stages (p < 0.05). SOC significantly increased in the PBAT-D treatments at both stages, and in the LDPE-Mi treatments at the harvesting stage, but decreased in the LDPE-D treatments at the flowering stage. In the PBAT-D treatments, POC increased but DOC and MAOC decreased at both stages. In the LDPE-D treatments, MBC, DOC and EOC significantly decreased but POC increased at both stages. In the LDPE-Mi treatments, MBC and DOC significantly decreased at the harvesting stage, while EOC and MAOC decreased but POC increased at the flowering stage. For C-enzymes, no significant inhibition was observed at the flowering stage, but they were significantly inhibited in all treatments at the harvesting stage. It is concluded that PBAT-D facilitates soil carbon sequestration, which may potentially alter the soil carbon pool and carbon emissions. The key significance of this study is to explore the overall effects of different forms of plastic pollution on soil carbon dynamics, and to inform future efforts to control plastic pollution in farmlands.
Afficher plus [+] Moins [-]A brief history of microplastics effect testing: Guidance and prospect Texte intégral
2025
de Ruijter, V.N. | Redondo Hasselerharm, P.E. | Koelmans, A.A.
Numerous reviews have consistently highlighted the shortcomings of studies evaluating the effects of microplastics (MP), with many of the issues identified in 2016 still relevant in 2024. Here, we summarize the current knowledge on MP effect testing, compare guidelines, and provide an overview of risk assessments conducted at both single species and community levels. We discuss standard test materials, MP characteristics, and mechanisms explaining effects. We have observed that the quality of MP effect studies is gradually improving, and knowledge on enhancing these studies is available. Recommendations include data rescaling and alignment for ecological risk assessment, with preference for using environmentally relevant MPs. A step-by-step protocol for creating polydisperse test materials is provided. Most risk assessments indicate that concentrations observed in ecosystems globally exceed the effect thresholds measured in the laboratory. However, using a higher-tier approach, no risks are expected for freshwater benthic communities at current MP exposure concentrations. Evidence on the mechanisms behind adverse effects is growing; however, more well-designed experiments are needed. A potential solution might involve comparing natural particles with MPs that are as similar in dimensions as possible, providing insight into the mechanisms of food dilution where volume is a critical determinant of toxicity.
Afficher plus [+] Moins [-]