Affiner votre recherche
Résultats 201-210 de 1,310
Patterns of insect communities along a stress gradient following decommissioning of a Cu–Ni smelter Texte intégral
2011
Babin-Fenske, Jennifer | Anand, Madhur
The diversity, estimated richness and abundance of terrestrial insect communities were examined along a stress gradient of past pollution in the region of Sudbury, Ontario, Canada. This gradient represents the natural recovery and lingering effects of a decommissioned copper–nickel smelting complex. Ant genera and sixteen higher taxonomic groups (family and order) had the highest abundance at the sites with intermediate stress. Eight families increased in abundance with distance from the decommissioned source of pollution and eleven families decreased reflecting a complex response of diversity to pollution. Carabid beetles show an increase in diversity further from the smelter; however, examination of the species composition reveals a distinct carabid community closest to the smelter, emphasizing the unique habitat created by severe pollution. Although almost forty years since decomissioning of the smelter complex, the terrestrial insect community in the vicinity remains significantly impacted suggesting slow recovery.
Afficher plus [+] Moins [-]Terrestrial exposure of oilfield flowline additives diminish soil structural stability and remediative microbial function Texte intégral
2011
George, S.J. | Sherbone, J. | Hinz, C. | Tibbett, M.
Terrestrial exposure of oilfield flowline additives diminish soil structural stability and remediative microbial function Texte intégral
2011
George, S.J. | Sherbone, J. | Hinz, C. | Tibbett, M.
Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons.
Afficher plus [+] Moins [-]Terrestrial exposure of oilfield flowline additives diminish soil structural stability and remediative microbial function Texte intégral
2011
George, S. J. | Sherbone, J. | Hinz, C. | Tibbett, Mark
Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons.
Afficher plus [+] Moins [-]Amending greenroof soil with biochar to affect runoff water quantity and quality Texte intégral
2011
Beck, Deborah A. | Johnson, Gwynn R. | Spolek, Graig A.
Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention.
Afficher plus [+] Moins [-]Species- and age-related variation in metal exposure and accumulation of two passerine bird species Texte intégral
2011
Berglund, Å.M.M. | Koivula, M.J. | Eeva, T.
We measured the concentration of several elements (arsenic [As], calcium [Ca], cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], selenium [Se] and zinc [Zn]) in adult and nestling pied flycatchers (Ficedula hypoleuca) and great tits (Parus major) at different distances to a Cu–Ni smelter in 2009. Feces of nestlings generally failed to correspond with internal element concentrations but reflected the pollution exposure, indicating an increased stress by removal of excess metals. The uptake of Cu and Ni were regulated, but As, Cd, Pb and Se accumulated in liver tissue. Pied flycatchers had generally higher element concentrations than great tits. The higher accumulation of As and Pb in pied flycatcher livers was explained by a more efficient absorption, whereas the higher Cd concentration was primarily due to different intake of food items. Age-related differences occurred between the two species, though both Cd and Se accumulated with age.
Afficher plus [+] Moins [-]Ecotoxicity of nanosized TiO₂. Review of in vivo data Texte intégral
2011
Menard, Anja | Drobne, Damjana | Jemec, Anita
This report presents an exhaustive literature review of data on the effect of nanoparticulate TiO₂ on algae, higher plants, aquatic and terrestrial invertebrates and freshwater fish. The aim, to identify the biologically important characteristics of the nanoparticles that have most biological significance, was unsuccessful, no discernable correlation between primary particle size and toxic effect being apparent. Secondary particle size and particle surface area may be relevant to biological potential of nanoparticles, but insufficient confirmatory data exist. The nanotoxicity data from thirteen studies fail to reveal the characteristics actually responsible for their biological reactivity because reported nanotoxicity studies rarely carry information on the physicochemical characteristics of the nanoparticles tested. A number of practical measures are suggested which should support the generation of reliable QSAR models and so overcome this data inadequacy.
Afficher plus [+] Moins [-]A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air Texte intégral
2011
Zhang, Yuzhong | Deng, Shuxing | Liu, Yanan | Shen, Guofeng | Li, Xiqing | Cao, Jun | Wang, Xilong | Reid, Brian | Tao, Shu
Air–soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAHLMW₄) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAHLMW₄ within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air–soil exchange of gaseous phase semi-volatile organic chemicals.
Afficher plus [+] Moins [-]Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems Texte intégral
2011
Lian, Fei | Huang, Fang | Chen, Wei | Xing, Baoshan | Zhu, Lingyan
Single- and bi-solute sorption of organic compounds [1,3-dichlorbenzene (DCB), 1,3-dinitrobenzene (DNB) and 2,4-dichlorophenol (DCP)] on ground tire rubber and its chars was studied. The chars were prepared by pyrolyzing tire rubber at different temperatures (200–800 °C). Their surface area, aromaticity and hydrophobicity increase greatly with pyrolytic temperature, and the polymeric phase is partly converted into a condensed phase. The sorption of DNB and DCP increases with pyrolytic temperature and is characterized by a transition from a partition dominant to an adsorption dominant process. However, the sorption of DCB linearly decreases with the pyrolytic temperature. The enhanced adsorption of DNB and DCP on carbonized phase is primarily attributed to nonhydrophobic interactions such as π–π electron-donor–acceptor interactions and/or H bonding. The higher partition of DCB to polymeric phase is attributed to its high hydrophobicity. Competitive sorption between DCB and DCP on the tire chars is highly dependent on dissociation of the latter.
Afficher plus [+] Moins [-]Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China Texte intégral
2011
Yin, Shan | Shen, Zhemin | Zhou, Pisheng | Zou, Xiaodong | Che, Shengquan | Wang, Wenhua
Parks with various types of vegetations played an important role in ameliorating air quality in urban areas. However, the attenuation effect of urban vegetation on levels of air pollution was rarely been experimentally estimated. This study, using seasonal monitoring data of total suspended particles (TSP), sulfur dioxide (SO₂) and nitrogen dioxide (NO₂) from six parks in Pudong District, Shanghai, China, demonstrated vegetations in parks can remove large amount of airborne pollutants. In addition, crown volume coverage (CVC) was introduced to characterize vegetation conditions in parks and a mixed-effects model indicated that CVC and the pollution diffusion distance were key predictors influencing pollutants removal rate. Therefore, it could be estimated by regression analysis that in summer, urban vegetations in Pudong District could contribute to 9.1% of TSP removal, 5.3% of SO₂ and 2.6% of NO₂. The results could be considered for a better park planning and improving air quality.
Afficher plus [+] Moins [-]Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L Texte intégral
2011
Ji, Puhui | Sun, Tieheng | Song, Yufang | Ackland, M Leigh | Liu, Yang
Field trials contribute practical information towards the development of phytoremediation strategies that cannot be provided by laboratory tests. We conducted field experiments utilizing the Cd hyperaccumulator plant Solanum nigrum L., on farmland contaminated with 1.91 mg kg⁻¹ Cd in the soil. Our study showed that S. nigrum has a relatively high biomass. Planting density had a significant effect on the plant biomass and thus on overall Cd accumulation. For double harvesting, an optimal cutting position influenced the amount of Cd extracted from soils. Double cropping was found to significantly increase the amount of Cd extracted by S. nigrum. Fertilizing had no significant effect on plant biomass or on the Cd remediation of the soil over the short-term period. Our study indicates that S. nigrum can accumulate Cd from soils where the concentrations are relatively low, and thus has application for use in decontamination of slightly to moderately Cd-contaminated soil.
Afficher plus [+] Moins [-]Ni adsorption and Ni–Al LDH precipitation in a sandy aquifer: An experimental and mechanistic modeling study Texte intégral
2011
Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel–Aluminium Layered Double Hydroxide (Ni–Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥7.2 both adsorption and Ni–Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈34%) and Ni–Al LDH precipitation (≈66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni–Al LDH precipitation is a promising mechanism to immobilize Ni.
Afficher plus [+] Moins [-]