Affiner votre recherche
Résultats 2041-2050 de 8,010
Environmental risk assessment of the anthelmintic albendazole in Eastern Africa, based on a systematic review Texte intégral
2021
Belew, Sileshi | Suleman, Sultan | Wynendaele, Evelien | Duchateau, Luc | De Spiegeleer, Bart
This study performs an environmental risk assessment (ERA) of the anthelmintic medicine albendazole (ABZ) in the eastern African region. A systematic literature search strategy was applied to obtain quantitative information on the physicochemical characteristics, the metabolization-fate, the ecotoxicity and the environmental occurrence in different countries worldwide serving as model regions. In addition, insilico tools were employed to obtain data on physicochemical characteristics and toxic hazards of ABZ and its metabolites. Moreover, ERA models were used to predict environmental concentrations in different compartments and compare them with the measured environmental concentrations. Finally, the environmental risk of ABZ in the eastern Africa was estimated by calculating the risk quotient (RQ), and its uncertainty estimated by Monte Carlo simulation. The predicted environmental concentrations of ABZ in surface water in the model region based on consumption (1.6–267 ng/L) were within the range of values obtained from the measured environmental concentrations of the same region (0.05–101,000 ng/L). Using these models with adapted input variables for eastern Africa, the predicted surface water concentration in that region was 19,600 ± 150 ng/L (95% CI). The calculated soil concentrations of ABZ in the model regions and the eastern Africa were found to be 0.057 ± 0.0 μg/kg and 0.022 ± 0.0 μg/kg, respectively. The environmental risk expressed as risk quotient of ABZ in eastern Africa estimated for the aquatic compartment (146 ± 1) indicated a significant environmental risk calling on appropriate actions from the competent authorities to reduce this risk in this region.
Afficher plus [+] Moins [-]Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands Texte intégral
2021
Wang, Jiao | Li, Jiayao | Liu, Sitong | Li, Hongyu | Chen, Xiaochen | Peng, Chu | Zhang, Pingping | Liu, Xianhua
Microplastic (MP) pollution poses a huge threat to agroecosystems, but the distribution characteristics of MPs in different types of farmland are still largely unknown. In this work, samples from six land-use types were collected from Chinese farmlands in five provinces. It was found that MP abundances were in the range of 2783–6366 items/kg in all samples. MP distribution results showed that over 80% of particles were less than 1 mm, and that MP sizes ranging between 0.02 and 0.2 mm represented the greatest proportion. The particle shape classified as fragment (with edges and angular) was the most frequent shape, with an abundance of approximately 54.05%. Polyethylene (PE) and polyamides (PA) were the most abundant polymers in cropped lands; 20.88% and 20.31%, respectively. Statistical analyses showed that lands used for plastic mulching (mulch film and greenhouse crops) had a significantly higher particle abundance, hence identifying plastic mulching as a major contributor to MP pollution in agricultural lands. Furthermore, paddy lands had a significantly higher MP abundance than wheat lands. Variation analyses of MP characteristics revealed that cereal crop farmlands (wheat, paddy land) were more likely to contain fibrous shapes and large MP particles (1–5 mm). Economically important tree lands (orchards, woodlands) were likely to contain fragment shapes and pony-size MPs (0.02–0.2 mm). Discrepancies among farmlands may depend on various reasons, such as mulching plastic application, irrigation, atmospheric fallout, etc. This study provides firsthand evidences about the characteristics of MP pollution in farmlands and explores some predominant MP sources in agroecosystems.
Afficher plus [+] Moins [-]Micronucleus test and nuclear abnormality assay in zebrafish (Danio rerio): Past, present, and future trends Texte intégral
2021
Canedo, Aryelle | de Jesus, Lázaro Wender Oliveira | Bailão, Elisa Flávia Luiz Cardoso | Rocha, Thiago Lopes
Nuclear abnormality (NA) assay in fish has been widely applied for toxicity risk assessment under field and laboratory conditions. The zebrafish (Danio rerio) has become a suitable model system for assessing the NA induced by pollutants. Thus, the current study aimed to summarize and discuss the literature concerning micronucleus (MN) and other NA in zebrafish and its applications in toxicity screening and environmental risk assessment. The data concerning the publication year, pollutant type, experimental design, and type of NA induced by pollutants were summarized. Also, molecular mechanisms that cause NA in zebrafish were discussed. Revised data showed that the MN test in zebrafish has been applied since 1996. The MN was the most frequently NA, but 15 other nuclear alterations were reported in zebrafish, such as notched nuclei, blebbed nuclei, binucleated cell, buds, lobed nuclei, bridges, and kidney-shaped. Several pollutants can induce NA in zebrafish, mainly effluents (mixture of pollutants), agrochemicals, and microplastics. The pollutant-induced NA in zebrafish depends on experimental design (i.e., exposure time, concentration, and exposure condition), developmental stages, cell/tissue type, and the type of pollutant. Besides, research gaps and recommendations for future studies are indicated. Overall, the current study showed that zebrafish is a suitable model to assess pollutant-induced mutagenicity.
Afficher plus [+] Moins [-]Coastal observation of halocarbons in the Yellow Sea and East China Sea during winter: Spatial distribution and influence of different factors on the enzyme-mediated reactions Texte intégral
2021
Zou, Yawen | He, Zhen | Liu, Junying | Qi, Qianqian | Yang, Gui-Peng | Mao, Shihai
Volatile brominated compounds are important trace gases for stratospheric ozone chemistry. In this study, the spatial variations of dibromomethane (CH₂Br₂), bromodichloromethane (CHBrCl₂), dibromochloromethane (CHBr₂Cl) and bromoform (CHBr₃) in the seawater and overlying atmosphere were measured in the Yellow Sea (YS) and the East China Sea (ECS) in winter. The air-sea fluxes of CH₂Br₂, CHBrCl₂, CHBr₂Cl and CHBr₃ ranged from −11.46 to 25.33, −4.68 to 7.91, −8.60 to 4.08 and −88.57 to 8.84 nmol m⁻²·d⁻¹, respectively. In order to understand the mechanism of halocarbons production, we measured bromoperoxidase (BrPO) activity (39.18–186.74 μU·L⁻¹) in the YS and ECS for the first time using an aminophenyl fluorescein (APF) method and performed in-situ incubation experiments in BrPO-treated seawater. The production rates of CH₂Br₂, CHBrCl₂, CHBr₂Cl and CHBr₃ ranged from 14.21 to 94.74, 0.00 to 19.74, 0.00 to 30.62 and 6.18–72.75 pmol L⁻¹·h⁻¹, respectively, in BrPO-treated seawater. There were significantly higher production rates in coastal waters compared with the open sea (P = 0.016) because of higher DOC levels near the coast. Moreover, the production rates of halocarbons increased with BrPO activity and H₂O₂ concentration. The results showed that enzyme-mediated reaction was an important source for the production of halocarbons in seawater. The present research is of great significance for understanding the production mechanisms of halocarbons in seawater and global oceanic halocarbons emissions.
Afficher plus [+] Moins [-]Gymnodimine A in mollusks from the north Atlantic Coast of Spain: Prevalence, concentration, and relationship with spirolides Texte intégral
2021
Lamas, JPablo | Arévalo, Fabiola | Moroño, Ángeles | Correa, Jorge | Rossignoli, Araceli E. | Blanco, Juan
Gymnodimine A has been found in mollusks obtained along the whole northern coast of Spain from April 2017 to December 2019. This is the first time that this toxin is detected in mollusks from the Atlantic coast of Europe. The prevalence of the toxin was, in general, low, being detected on average in approximately 6% of the obtained samples (122 out of 1900). The concentrations recorded were also, in general, low, with a median of 1.3 μg kg⁻¹, and a maximum value of 23.93 μg kg⁻¹. The maxima of prevalence and concentration were not geographically coincident, taking place the first at the easternmost part of the sampled area and the second at the westernmost part. In most cases (>94%), gymnodimine A and 13-desmethyl spirolide C were concurrently detected, suggesting that Alexandrium ostenfeldii could be the responsible producer species. The existence of cases in which gymnodimine A was detected alone suggests also that a Karenia species could also be involved. The geographical heterogeneity of the distribution suggests that blooms of the producer species are mostly local. Not all bivalves are equally affected, clams being less affected than mussels, oysters, and razor clams. Due to their relatively low toxicity, and their low prevalence and concentration, it seems that these toxins do not pose an important risk for the mollusk consumers in the area.
Afficher plus [+] Moins [-]Energy reserves, oxidative stress and development traits of Spodoptera exigua Hübner individuals from cadmium strain Texte intégral
2021
Kafel, Alina | Babczyńska, Agnieszka | Zawisza-Raszka, Agnieszka | Tarnawska, Monika | Płachetka-Bożek, Anna | Augustyniak, Maria
Cadmium as a common environmental stressor may exert highly toxic effects on herbivorous insects. The question was whether possible elevation of an oxidative stress and imbalance of energetic reserves in insects may depend on developmental stage, sex and insect population’s multigenerational history of exposure to cadmium. So, the aim of this study was to compare of the development traits, total antioxidant capacity, lipid peroxidation, RSSR to RSH ratio and the concentration of carbohydrates, glycogen, lipids and proteins in whole individuals (larvae or pupae) of Spodoptera exigua originating from two strains: control and selected over 120 generations with sublethal metal concentration (44 Cd mg per dry weight of diet). Generally, the increase of the protein, carbohydrates, glycogen concentration and lipid peroxidation decrease with age of the larvae were found. Revealed cases of a higher mobilisation of carbohydrates and proteins, and changes in total antioxidant capacity or lipid peroxidation, in individuals being under metal exposure, occurred in strain-depended mode. Short-term Cd exposure effect was connected with possible higher engagement of proteins and glycogen in detoxification processes, but also higher concentration of lipid peroxidation. In turn, for long-term Cd exposure effect lower lipids concentration and higher thiols usage seemed to be more specific.
Afficher plus [+] Moins [-]Selenium(Ⅳ) alleviates chromium(Ⅵ)-induced toxicity in the green alga Chlamydomonas reinhardtii Texte intégral
2021
Zhang, Baolong | Duan, Guangqian | Fang, Yingying | Deng, Xuan | Yin, Yongguang | Huang, Kaiyao
The wide range of industrial applications of chromium (Cr) has led to an increasing risk of water contamination by Cr(Ⅵ). However, efficient methods to remove or decrease the toxicity of Cr(Ⅵ) in situ are lacking. The main aim of this study was to investigate the mechanisms by which selenite alleviates chromium(Ⅵ)-induced toxicity in Chlamydomonas reinhardtii. Our results showed that K₂Cr₂O₇ had toxic effects on both the structure and physiology of C. reinhardtii in a dose-dependent manner. Adding selenite significantly alleviated chromium accumulation and toxicity in cells. RNA-seq data showed that the expression level of selenoproteins such as SELENOH was significantly increased. Both SELENOH-amiRNA knockdown mutants and selenoh insertional mutant produced more reactive oxygen species (ROS) and grew slower than the wild type, suggesting that SELENOH can reduce chromium toxicity by decreasing the levels of ROS produced by Cr(Ⅵ). We also demonstrated that selenite can reduce the absorption of Cr(Ⅵ) by cells but does not affect the process of Cr(Ⅵ) adsorption and efflux. This information on the molecular mechanism by which selenite alleviates Cr(Ⅵ) toxicity can be used to increase the bioremediation capacity of algae and reduce the human health risks associated with Cr(Ⅵ) toxicity.
Afficher plus [+] Moins [-]Co-oxidative removal of arsenite and tetracycline based on a heterogeneous Fenton-like reaction using iron nanoparticles-impregnated biochar Texte intégral
2021
Fu, Dun | Kurniawan, Tonni Agustiono | Li, Heng | Wang, Haitao | Wang, Yuanpeng | Li, Qingbiao
A highly efficient, eco-friendly and relatively low-cost catalyst is necessary to tackle bottlenecks in the treatment of industrial wastewater laden with heavy metals and antibiotic such as livestock farm and biogas liquids. This study investigated co-oxidative removal of arsenite (As(III)) and tetracycline (TC) by iron nanoparticles (Fe NP)-impregnated carbons based on heterogeneous Fenton-like reactions. The composites included Fe NP@biochar (BC), Fe NP@hydrochar (HC), and Fe NP@HC-derived pyrolysis char (HDPC). The functions of N and S atoms and the loading mass of the Fe NP in the Fe NP@BC in heterogeneous Fenton-like reactions were studied. To sustain its cost-effectiveness, the spent Fe NP@BC was regenerated using NaOH. Among the composites, the Fe NP@BC achieved an almost complete removal of As(III) and TC under optimized conditions (1.0 g/L of dose; 10 mM H₂O₂; pH 6; 4 h of reaction; As(III): 50 μM; TC: 50 μM). The co-oxidative removal of As(III) and TC by the Fe NP@ BC was controlled by the synergistic interactions between the Fe NPs and the active N and S sites of the BC for generating reactive oxygen species (ROS). After four consecutive regeneration cycles, about 61 and 95% of As(III) and TC removal were attained. This implies that the spent carbocatalyst still has reasonable catalytic activities for reuse. Overall, this suggests that adding technological values to unused biochar as a carbocatalyst like Fe NP@BC was promising for co-oxidative removal of As(III) and TC from contaminated water.
Afficher plus [+] Moins [-]Childhood exposure to metal(loid)s in industrial and urban areas along the Persian Gulf using toenail tissue as a biomarker Texte intégral
2021
Parhizkar, Gohar | Khalili Doroodzani, Atefeh | Dobaradaran, Sina | Ramavandi, Bahman | Hashemi, Seyed Enayat | Raeisi, Alireza | Nabipour, Iraj | Keshmiri, Saeed | Darabi, Amirhossein | Afrashte, Sima | Khamisipour, Gholamreza | Keshtkar, Mozhgan
Metal(loid)s (MLs) with natural or anthropogenic sources may cause adverse health effects in children. This study aimed to compare the childhood exposure to ΣMLs (essential, non-essential and toxic) in an industrial and an urban area in Southwest Iran using toenail tissue as a biomarker. The present study was carried out with school children in the age range of 7–12 years, who were living in an industrial area in the petrochemical and gas area (PGA) of the Central District of Asaluyeh County and in an urban area (UA) located in the Kaki District. A total of 270 boys and girls were recruited in January to April 2019. The ICP-MS was used for determination of the studied MLs. A multi-linear regression model was constructed to assess the effect of residence area on toenail ML levels. A significantly higher level of ΣMLs in toenail from the PGA was observed compared to the level in the UA (8.839 vs. 7.081 μg/g, β = -0.169 and p < 0.05). However, all of the 15 MLs studied were detected in the toenail samples from both study sites. Significant differences for the mean Cr (β = −0.563), Fe (β = −0.968), Mn (β = −0.501), Ni (β = −0.306), and Pb (β = −0.377) levels were found between toenail samples from the study areas (p < 0.05), with higher levels in the PGA. The results of this study suggest that children in industrial area are prone to a greater risk for ML exposures compared with those living in a non-industrial urban area.
Afficher plus [+] Moins [-]Immobilization of high-Pb contaminated soil by oxalic acid activated incinerated sewage sludge ash Texte intégral
2021
Li, Jiang-shan | Wang, Qiming | Chen, Zhen | Xue, Qiang | Chen, Xin | Mu, Yanhu | Poon, C. S. (Chi-sun)
Identifying effective and low-cost agents for the remediation of Pb-contaminated soil is of great importance for field-scale applications. In this study, the feasibility of reusing incinerated sewage sludge ash (ISSA), a waste rich in phosphorus, under activation by oxalic acid (OA) for the remediation of high-Pb contaminated soil was investigated. ISSA and OA were mixed at different proportions for the treatment of the high-Pb contaminated soil (5000 mg/kg). The Pb immobilization efficacy was further examined by both the standard deionized water leaching test and the toxicity characteristic leaching procedure (TCLP). The overall results showed that the use of the ISSA alone and an appropriate mixture of the ISSA and OA could effectively reduce the leachability of Pb from soil. 20% ISSA together with 30% OA (0.2 mol/L) reduced leached Pb concentration by 99%. The main stabilization mechanisms were then explored by different microstructural and spectroscopic analytical techniques including SEM, XRD and FTIR. Apparently, OA released phosphate from the ISSA and Pb from soil via acid attack, which combined and precipitated as stable lead phosphate minerals. However, excessive OA could cause high leaching of phosphate and zinc from the ISSA. Overall, this study indicates that ISSA could be used together with OA to remediate high-Pb contaminated soil, but careful design of mix proportions is necessary before practical application to avoid excessive leaching of phosphate and zinc from the ISSA.
Afficher plus [+] Moins [-]