Affiner votre recherche
Résultats 2051-2060 de 2,529
Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata Texte intégral
2014
Neoh, Chin Hong | Lam, Chi Yong | Lim, Chi Kim | Yahya, Adibah | Ibrahim, Zaharah
Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds.
Afficher plus [+] Moins [-]Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea Texte intégral
2014
Song, Sang-Keun | Shon, Zang-Ho
The emissions of exhaust gases (NO ₓ , SO₂, VOCs, and CO₂) and particles (e.g., PM) from ships traversing Busan Port in Korea were estimated over three different years (the years 2006, 2008, and 2009). This analysis was performed according to the ship operational modes (“at sea,” “maneuvering,” and “in port”) and ship types based on an activity-based method. The ship emissions for current (base year 2009) and future scenarios (years 2020 and 2050) were also compared. The annual emissions of SO₂, VOCs, PM, and CO₂were highest (9.6 × 10³, 374, 1.2 × 10³, and 5.6 × 10⁵ton year⁻¹, respectively) in 2008. In contrast, the annual NO ₓ emissions were highest (11.7 × 10³ton year⁻¹) in 2006 due mainly to the high NO ₓ emission factor. The emissions of air pollutants for each ship operational mode differed considerably, with the largest emission observed in “in port” mode. In addition, the largest fraction (approximately 45–67 %) of the emissions of all air pollutants during the study period was emitted from container ships. The future ship emissions of most pollutants (except for SO₂and PM) in 2020 and 2050 are estimated to be 1.4–1.8 and 4.7–6.1 times higher than those in 2009 (base year), respectively.
Afficher plus [+] Moins [-]Modulation of cell viability, oxidative stress, calcium homeostasis, and voltage- and ligand-gated ion channels as common mechanisms of action of (mixtures of) non-dioxin-like polychlorinated biphenyls and polybrominated diphenyl ethers Texte intégral
2014
Westerink, Remco H. S.
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that exert neurodevelopmental and neurobehavioral effects in vivo in humans and animals. Acute in vitro neurotoxic effects include changes in cell viability, oxidative stress, and basal intracellular calcium levels. Though these acute cellular effects could partly explain the observed in vivo effects, other mechanisms, such as effects on calcium influx and neurotransmitter receptor function, likely contribute to the disturbance in neurotransmission. This concise review combines in vitro data on cell viability, oxidative stress and basal calcium levels with recent data that clearly demonstrate that (hydroxylated) PCBs and (hydroxylated) PBDEs can exert acute effects on voltage-gated Ca²⁺channels as well as on excitatory and inhibitory neurotransmitter receptors in vitro. These novel mechanisms of action are shared by NDL-PCBs, OH-PBDEs, and some other persistent organic pollutants, such as tetrabromobisphenol-A, and could have profound effects on neurodevelopment, neurotransmission, and neurobehavior in vivo.
Afficher plus [+] Moins [-]Altered physiology, cell structure, and gene expression of Theobroma cacao seedlings subjected to Cu toxicity Texte intégral
2014
Souza, Vânia L. | Almeida, Alex-Alan F. | de S. Souza, Jadiel | Mangabeira, Pedro A. O. | de Jesus, Raildo M. | Pirovani, Carlos P. | Ahnert, Dário | Baligar, V. C. | Loguercio, Leandro L.
Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L−1) in nutrient solution. When doses were equal or higher than 8mg Cu L−1, after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L−1 significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.
Afficher plus [+] Moins [-]Short-term effect of aniline on soil microbial activity: a combined study by isothermal microcalorimetry, glucose analysis, and enzyme assay techniques Texte intégral
2014
Chen, Huilun | Zhuang, Rensheng | Yao, Jun | Wang, Fei | Qian, Yiguang | Masakorala, Kanaji | Cai, Minmin | Liu, Haijun
The accidents of aniline spill and explosion happened almost every year in China, whereas the toxic effect of aniline on soil microbial activity remained largely unexplored. In this study, isothermal microcalorimetric technique, glucose analysis, and soil enzyme assay techniques were employed to investigate the toxic effect of aniline on microbial activity in Chinese soil for the first time. Soil samples were treated with aniline from 0 to 2.5 mg/g soil to tie in with the fact of aniline spill. Results from microcalorimetric analysis showed that the introduction of aniline had a significant adverse effect on soil microbial activity at the exposure concentrations ≥0.4 mg/g soil (p < 0.05) and ≥0.8 mg/g soil (p < 0.01), and the activity was totally inhibited when the concentration increased to 2.5 mg/g soil. The glucose analysis indicated that aniline significantly decreased the soil microbial respiratory activity at the concentrations ≥0.8 mg/g soil (p < 0.05) and ≥1.5 mg/g soil (p < 0.01). Soil enzyme activities for β-glucosidase, urease, acid-phosphatase, and dehydrogenase revealed that aniline had a significant effect (p < 0.05) on the nutrient cycling of C, N, and P as well as the oxidative capacity of soil microorganisms, respectively. All of these results showed an intensively toxic effect of aniline on soil microbial activity. The proposed methods can provide toxicological information of aniline to soil microbes from the metabolic and biochemical point of views which are consistent with and correlated to each other.
Afficher plus [+] Moins [-]Decomposition of NO in automobile exhaust by plasma–photocatalysis synergy Texte intégral
2014
Chen, Meng | Jin, Lisheng | Liu, Yanhua | Guo, Xiurong | Chu, Jiangwei
The combination of plasma discharge and TiO₂ photocatalysis exhibits high performances in the removal of nitrogen monoxide (NO). This article is aimed at elucidating the relationships between NO decomposition efficiency and various experimental parameters, including voltages, humidity and temperature. The experimental results indicate that the efficiency of NO removal by synergic plasma-catalyst coupling is significantly higher than plasma only or photocatalyst only systems. Moreover, the NO removal efficiency improves with the increase of applied voltage. Meanwhile, a higher humidity results in a reduced number of electron–hole pairs at the surface of TiO₂ photocatalyst, leading to lower synergic purification efficiencies. Finally, the efficiency of NO removal is raised with the increase of temperature due to the fact that the adsorption of NO and water by nano-TiO₂ is affected by environmental temperature.
Afficher plus [+] Moins [-]Nitrogen removal via the nitrite pathway during wastewater co-treatment with ammonia-rich landfill leachates in a sequencing batch reactor Texte intégral
2014
Fudala-Ksiazek, S. | Luczkiewicz, A. | Fitobor, K. | Olanczuk-Neyman, K.
The biological treatment of ammonia-rich landfill leachates due to an inadequate C to N ratio requires expensive supplementation of carbon from an external carbon source. In an effort to reduce treatment costs, the objective of the study was to determine the feasibility of nitrogen removal via the nitrite pathway during landfill leachate co-treatment with municipal wastewater. Initially, the laboratory-scale sequencing batch reactor (SBR) was inoculated with nitrifying activated sludge and fed only raw municipal wastewater (RWW) during a start-up period of 9 weeks. Then, in the co-treatment period, consisting of the next 17 weeks, the system was fed a mixture of RWW and an increasing quantity of landfill leachates (from 1 to 10 % by volume). The results indicate that landfill leachate addition of up to 10 % (by volume) influenced the effluent quality, except for BOD₅. During the experiment, a positive correlation (r² = 0.908) between ammonia load in the influent and nitrite in the effluent was observed, suggesting that the second step of nitrification was partially inhibited. The partial nitrification (PN) was also confirmed by fluorescence in situ hybridisation (FISH) analysis of nitrifying bacteria. Nitrogen removal via the nitrite pathway was observed when the oxygen concentration ranged from 0.5 to 1.5 mg O₂/dm³and free ammonia (FA) ranged from 2.01 to 35.86 mg N-NH₃/dm³in the aerobic phase. Increasing ammonia load in wastewater influent was also correlated with an increasing amount of total nitrogen (TN) in the effluent, which suggested insufficient amounts of assimilable organic carbon to complete denitrification. Because nitrogen removal via the nitrite pathway is beneficial for carbon-limited and highly ammonia-loaded mixtures, obtaining PN can lead to a reduction in the external carbon source needed to support denitrification.
Afficher plus [+] Moins [-]Estimation and characterization of unintentionally produced persistent organic pollutant emission from converter steelmaking processes Texte intégral
2014
Li, Sumei | Zheng, Minghui | Liu, Wenbin | Liu, Guorui | Xiao, Ke | Li, Changliang
Unintentionally produced persistent organic pollutants (UP-POPs) including polychlorinated dibenzo-p-dioxins, and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs) were characterized and quantified in stack gas and fly ash from the second ventilation systems in five typical converters in five different steelmaking plants. The 2378-substituted PCDD/Fs (2378-PCDD/Fs) and dioxin-like PCB (dl-PCBs) toxic equivalents (TEQs) were 1.84–10.3 pg WHO-TEQ Nm⁻³in the stack gas and 5.59–87.6 pg WHO-TEQ g⁻¹in the fly ash, and the PCN TEQs were 0.06–0.56 pg TEQ Nm⁻³in the stack gas and 0.03–0.08 pg TEQ g⁻¹in the fly ash. The concentrations of UP-POPs in the present study were generally lower than those in other metallurgical processes, such as electric arc furnaces, iron ore sintering, and secondary metallurgical processes. Adding scrap metal might increase UP-POP emissions, indicating that raw material composition was a key influence on emissions. HxCDF, HpCDF, OCDF, HpCDD, and OCDD were the dominant PCDD/Fs in the stack gas and fly ash. TeCB and PeCB were dominant in the stack gas, but HxCB provided more to the total PCB concentrations in the fly ash. The lower chlorinated PCNs were dominant in all of the samples. The 2378-PCDD/F, dl-PCB, and PCN emission factors in stack gases from the steelmaking converter processes (per ton of steel produced) were 1.88–2.89, 0.14–0.76,and 229–759 μg t⁻¹, respectively.
Afficher plus [+] Moins [-]A robust simulation–optimization modeling system for effluent trading—a case study of nonpoint source pollution control Texte intégral
2014
Zhang, J. L. | Li, Y. P. | Huang, G. H.
In this study, a robust simulation–optimization modeling system (RSOMS) is developed for supporting agricultural nonpoint source (NPS) effluent trading planning. The RSOMS can enhance effluent trading through incorporation of a distributed simulation model and an optimization model within its framework. The modeling system not only can handle uncertainties expressed as probability density functions and interval values but also deal with the variability of the second-stage costs that are above the expected level as well as capture the notion of risk under high-variability situations. A case study is conducted for mitigating agricultural NPS pollution with an effluent trading program in Xiangxi watershed. Compared with non-trading policy, trading scheme can successfully mitigate agricultural NPS pollution with an increased system benefit. Through trading scheme, [213.7, 288.8] × 10³ kg of TN and [11.8, 30.2] × 10³ kg of TP emissions from cropped area can be cut down during the planning horizon. The results can help identify desired effluent trading schemes for water quality management with the tradeoff between the system benefit and reliability being balanced and risk aversion being considered.
Afficher plus [+] Moins [-]Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater Texte intégral
2014
Sekaran, G. | Karthikeyan, S. | Boopathy, R. | Maharaja, P. | Gupta, V. K. | Anandan, C.
The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N₂adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy,²⁹Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H₂O₂(4 mmol/L), FeSO₄[Symbol: see text]7H₂O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90 %, respectively.
Afficher plus [+] Moins [-]