Affiner votre recherche
Résultats 2051-2060 de 7,997
Toxic effects of ammonia on the intestine of the Asian clam (Corbicula fluminea) Texte intégral
2021
Zhang, Tianxu | Zhang, Yan | Xu, Jiayun | Zhenguang, Yan | Sun, Qianhang | Huang, Yi | Wang, Shuping | Li, Shuo | Sun, Binbin
Intestines contain a large number of microorganisms that collectively play a vital role in regulating physiological and biochemical processes, including digestion, water balance, and immune function. In this study, we explored the effects of ammonia stress on intestinal inflammation, the antioxidant system, and the microbiome of the Asian clam (Corbicula fluminea). Exposure to varying ammonia concentrations (10 and 25 mg N/L) and exposure times (7 and 14 days) resulted in damage to C. fluminea intestinal tissue, according to histological analysis. Furthermore, intestinal inflammatory responses and damage to the antioxidant system were revealed through qPCR, ELISA, and biochemical analysis experiments. Inflammatory responses were more severe in the treatment group exposed to a lower concentration of ammonia. High-throughput 16S rDNA sequencing showed that ammonia stress under different conditions altered intestinal bacterial diversity and microbial community composition, particularly impacting the dominant phylum Proteobacteria and genus Aeromonas. These results indicate that ammonia stress can activate intestinal inflammatory reactions, damage the intestinal antioxidant system, and alter intestinal microbial composition, thereby impeding intestinal physiological function and seriously threatening the health of C. fluminea.
Afficher plus [+] Moins [-]Significant changes in autumn and winter aerosol composition and sources in Beijing from 2012 to 2018: Effects of clean air actions Texte intégral
2021
Li, Jiayun | Gao, Wenkang | Cao, Liming | Xiao, Yao | Zhang, Yangmei | Zhao, Shuman | Liu, Zan | Liu, Zirui | Tang, Guiqian | Ji, Dongsheng | Hu, Bo | Song, Tao | He, Lingyan | Hu, Min | Wang, Yuesi
A seven-year long-term comprehensive measurement of non-refractory submicron particles (NR-PM₁) in autumn and winter in Beijing from 2012 to 2018 was conducted to evaluate the effectiveness of the clean air actions implemented by the Chinese government in September 2013 on aerosols from different sources and chemical processes. Results showed that the NR-PM₁ concentrations decreased by 44.1% in autumn and 73.2% in winter from 2012 to 2018. Sulfate showed a much larger reduction than nitrate and ammonium in both autumn (55%) and winter (86%) and that nitrate even slightly increased by 15.8% in autumn. As a result, aerosol pollution in winter gradually changed from sulfate-rich to nitrate-rich with a sudden change after 2016 and the dominant role of nitrate in autumn was also strengthened after 2016. Among primary organic aerosol (OA) types, biomass burning OA and coal combustion OA exhibited the largest decline in autumn and winter, with reductions of 87.5% and 77.3%, respectively, while hydrocarbon-like OA (HOA) exhibited the smallest decline in both autumn (24.4%) and winter (37.1%). These significant changes in aerosol compositions were highly consistent with the much faster reduction of SO₂ (75–85%) than NOx (36–59%) and were mainly due to the clean air actions rather than the impact of meteorological conditions. What’s more, the enhanced atmospheric oxidizing capacity, which was indicated by increased O₃, altered the chemical processes of oxygenated OA (OOA), especially in autumn. Both of less-oxidized OOA (LO-OOA) and more-oxidized OOA showed elevated contributions in OA by 4% in autumn. The increased oxygen-to-carbon ratios of LO-OOA in autumn (from 0.42 to 0.58) and winter (from 0.44 to 0.52) indicated the enhanced atmospheric oxidizing capacity strengthened photochemical reactions and resulted in the increased oxidation degree of LO-OOA. This study demonstrates the effectiveness of the clean air actions for air quality improvement in Beijing.
Afficher plus [+] Moins [-]Microplastics accumulate to thin layers in the stratified Baltic Sea Texte intégral
2021
Uurasjärvi, Emilia | Pääkkönen, Minna | Setälä, Outi | Koistinen, Arto | Lehtiniemi, Maiju
Microplastics accumulate to thin layers in the stratified Baltic Sea Texte intégral
2021
Uurasjärvi, Emilia | Pääkkönen, Minna | Setälä, Outi | Koistinen, Arto | Lehtiniemi, Maiju
In the Baltic Sea, water is stratified due to differences in density and salinity. The stratification prevents water from mixing, which could affect sinking rates of microplastics in the sea. We studied the accumulation of microplastics to halocline and thermocline. We sampled water with a 100 μm plankton net from vertical transects between halo- and thermocline, and a 30 L water sampler from the end of halocline and the beginning of thermocline. Thereafter, microplastics in the whole sample volumes were analyzed with imaging Fourier transform infrared spectroscopy (FTIR). The plankton net results showed that water column between halo- and thermoclines contained on average 0.92 ± 0.61 MP m⁻³ (237 ± 277 ng/m⁻³; mean ± SD), whereas the 30 L samples from the end of halocline and the beginning of thermocline contained 0.44 ± 0.52 MP L⁻¹ (106 ± 209 ng L⁻¹). Hence, microplastics are likely to accumulate to thin layers in the halocline and thermocline. The vast majority of the found microplastics were polyethylene, polypropylene and polyethylene terephthalate, which are common plastic types. We did not observe any trend between the density of microplastics and the sampling depth, probably because biofilm formation affected the sinking rates of the particles. Our results indicate the need to sample deeper water layers in addition to surface waters at least in the stratified water bodies to obtain a comprehensive overview of the abundance of microplastics in the aquatic environment.
Afficher plus [+] Moins [-]Microplastics accumulate to thin layers in the stratified Baltic Sea Texte intégral
2021
Uurasjärvi, Emilia | Pääkkönen, Minna | Setälä, Outi | Koistinen, Arto | Lehtiniemi, Maiju
Highlights • Microplastic (MP) concentrations were high in halo- and thermoclines. • In stratified seawater, the water column can contain more MPs than surface water. • MPs did not sink according to the densities of virgin plastics. | In the Baltic Sea, water is stratified due to differences in density and salinity. The stratification prevents water from mixing, which could affect sinking rates of microplastics in the sea. We studied the accumulation of microplastics to halocline and thermocline. We sampled water with a 100 μm plankton net from vertical transects between halo- and thermocline, and a 30 L water sampler from the end of halocline and the beginning of thermocline. Thereafter, microplastics in the whole sample volumes were analyzed with imaging Fourier transform infrared spectroscopy (FTIR). The plankton net results showed that water column between halo- and thermoclines contained on average 0.92 ± 0.61 MP m−3 (237 ± 277 ng/m−3; mean ± SD), whereas the 30 L samples from the end of halocline and the beginning of thermocline contained 0.44 ± 0.52 MP L−1 (106 ± 209 ng L−1). Hence, microplastics are likely to accumulate to thin layers in the halocline and thermocline. The vast majority of the found microplastics were polyethylene, polypropylene and polyethylene terephthalate, which are common plastic types. We did not observe any trend between the density of microplastics and the sampling depth, probably because biofilm formation affected the sinking rates of the particles. Our results indicate the need to sample deeper water layers in addition to surface waters at least in the stratified water bodies to obtain a comprehensive overview of the abundance of microplastics in the aquatic environment.
Afficher plus [+] Moins [-]Effect of salinity and algae biomass on mercury cycling genes and bacterial communities in sediments under mercury contamination: Implications of the mercury cycle in arid regions Texte intégral
2021
Song, Wenjuan | Xiong, Heigang | Qi, Ran | Wang, Shuzhi | Yang, Yuyi
Lakes in arid regions are experiencing mercury pollution via air deposition and surface runoff, posing a threat to ecosystem safety and human health. Furthermore, salinity and organic matter input could influence the mercury cycle and composition of bacterial communities in the sediment. In this study, the effects of salinity and algae biomass as an important organic matter on the genes (merA and hgcA) involved in the mercury cycle under mercury contamination were investigated. Archaeal merA and hgcA were not detected in sediments of lake microcosms, indicating that bacteria rather than archaea played a crucial role in mercury reduction and methylation. The high content of mercury (300 ng g⁻¹) could reduce the abundance of both merA and hgcA. The effects of salinity and algae biomass on mercury cycling genes depended on the gene type and dose. A higher input of algae biomass (250 mg L⁻¹) led to an increase of merA abundance, but a decrease of hgcA abundance. All high inputs of mercury, salinity, and algae biomass decreased the richness and diversity of bacterial communities in sediment. Further analysis indicated that higher mercury (300 ng g⁻¹) led to an increased relative abundance of mercury methylators, such as Ruminococcaceae, Bacteroidaceae, and Veillonellaceae. Under saline conditions (10 and 30 g L⁻¹), the richness of specific bacteria associated with mercury reduction (Halomonadaceae) and methylation (Syntrophomonadaceae) increased compared to the control. The input of algae biomass led to an increase in the specific bacterial communities associated with the mercury cycle and the richness of bacteria involved in the decomposition of organic matter. These results provide insight into mercury cycle-related genes and bacterial communities in the sediments of lakes in arid regions.
Afficher plus [+] Moins [-]Long-term sulfide input enhances chemoautotrophic denitrification rather than DNRA in freshwater lake sediments Texte intégral
2021
Pang, Yunmeng | Wang, Jianlong | Li, Shengjie | Ji, Guodong
Partitioning between nitrate reduction pathways, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) determines the fate of nitrate removal and thus it is of great ecological importance. Sulfide (S²⁻) is a potentially important factor that influences the role of denitrification and DNRA. However, information on the impact of microbial mechanisms for S²⁻ on the partitioning of nitrate reduction pathways in freshwater environments is still lacking. This study investigated the effects of long-term (108 d) S²⁻ addition on nitrate reduction pathways and microbial communities in the sediments of two different freshwater lakes. The results show that the increasing S²⁻ addition enhanced the coupling of S²⁻ oxidation with denitrification instead of DNRA. The sulfide-oxidizing denitrifier, Thiobacillus, was significantly enriched in the incubations of both lake samples with S²⁻ addition, which indicates that it may be the key genus driving sulfide-oxidizing denitrification in the lake sediments. During S²⁻ incubation of the Hongze Lake sample, which had lower inherent organic carbon (C) and sulfate (SO₄²⁻), Thiobacillus was more enriched and played a dominant role in the microbial community; while during that of the Nansi Lake sample, which had higher inherent organic C and SO₄²⁻, Thiobacillus was less enriched, but increasing abundances of sulfate reducing bacteria (Desulfomicrobium, Desulfatitalea and Geothermobacter) were observed. Moreover, sulfide-oxidizing denitrifiers and sulfate reducers were enriched in the Nansi Lake control treatment without external S²⁻ input, which suggests that internal sulfate release may promote the cooperation between sulfide-oxidizing denitrifiers and sulfate reducers. This study highlights the importance of sulfide-driven denitrification and the close coupling between the N and S cycles in freshwater environments, which are factors that have often been overlooked.
Afficher plus [+] Moins [-]Nitrogen budgets of contrasting crop-livestock systems in China Texte intégral
2021
Jin, Xinpeng | Zhang, Nannan | Zhao, Zhanqing | Bai, Zhaohai | Ma, Lin
The crop-livestock system is responsible for a large proportion of global reactive nitrogen (Nr) losses, especially from China. There are diverse livestock systems with contrasting differences in feed, livestock and manure management. However, it is not yet well understood which factors greatly impact on the nitrogen (N) budgets and losses of each system. In this study, we systematically evaluated the N budgets of the crop-livestock production system from 1980 to 2050 in China by identifying the differences of 20 distinct livestock systems. During 1980 to 2010, the total N flow through the crop-livestock system increased from 21.4 to 49.7 Tg, with large variations in different input/output pathways, due to the strong livestock transitions of production towards to a monogastric and landless industrial system. Different systems contributed differently to the total N budgets in 2010. For example, the landless industrial system contributed 67% of livestock product N output, but accounted for 80% of total mineral N fertilizer use and feed N imports by the whole crop-livestock system. The mixed system had the highest rate of N use efficiency at system level due to high dependence on recycled N. N losses were diversely distributed by different systems, with the mixed ruminant system responsible for the majority of NH₃–N emission in livestock production, and the grazing ruminant system dominant in NO₃–N losses in feed production. The total N entering the crop-livestock system is estimated to be 53.9 Tg with total N losses of 41.3 Tg in 2050 under a business-as-usual scenario. However, this amount could be significantly decreased through combined measures that indicate a considerable potential for future improvements. Overall, our results provide new insights into N use and the management of livestock production.
Afficher plus [+] Moins [-]Endocrine-disrupting chemicals in a typical urbanized bay of Yellow Sea, China: Distribution, risk assessment, and identification of priority pollutants Texte intégral
2021
Lü Shuang, | Lin, Chunye | Lei, Kai | Xin, Ming | Wang, Baodong | Ouyang, Wei | Liu, Xitao | He, Mengchang
Endocrine-disrupting chemicals (EDCs) in water are receiving particular attention as they pose adverse effects on aquatic systems, even at trace concentrations. A comprehensive study was conducted on 14 EDCs (five estrogens and nine household and personal care products (HPCPs)) in the water of the urbanized Jiaozhou Bay in the Yellow Sea during summer and winter. Results showed that the total concentration of 14 EDCs ranged from 100 to 658 ng L⁻¹ and 56.7–212 ng L⁻¹ in the estuarine and bay water, respectively. The average total concentration of five estrogens in summer was significantly (p < 0.05) lower than that in winter due to the higher precipitation dilution and degradations during summer, whereas the average total concentration of nine HPCPs was significantly (p < 0.05) higher during the summer than that during the winter because of the higher usage and emissions during the summer. Estrogens and HPCPs were dominated by 17α-ethinylestradiol and p-hydroxybenzoic acid (PHBA), respectively. High PHBA concentrations may be related to the hydrolysis of parabens. The total concentrations of EDCs were higher in the eastern coastal seawater of the bay due to the strong influence of domestic and industrial wastewater discharge. Estrogens may interfere with the endocrine system of aquatic organisms in the bay because the total estradiol equivalent concentration exceeded 1 ng L⁻¹. 17α-ethinylestradiol was the main contributor to the estrogenic activity. The EDC mixtures posed high risks (RQ > 1) to mollusks, crustaceans, and fish, and low to moderate risks (RQ < 1) to algae. Fish was the most sensitive aquatic taxon to the EDC mixtures. Given the concentration and frequency of EDCs, the optimized risk quotient method revealed that 17α-ethinylestradiol, estrone, triclocarban, triclosan, and 17β-estradiol should be prioritized in ecological management because of their high risks (prioritization index of >1).
Afficher plus [+] Moins [-]Organophosphate pesticide exposure: Demographic and dietary predictors in an urban pregnancy cohort Texte intégral
2021
Liu, Hongxiu | Campana, Anna Maria | Wang, Yuyan | Kannan, Kurunthachalam | Liu, Mengling | Zhu, Hongkai | Mehta-Lee, Shilpi | Brubaker, Sara G. | Kahn, Linda G. | Trasande, Leonardo | Ghassabian, Akhgar
Pregnant women are widely exposed to organophosphate (OP) pesticides, which are potentially neurotoxicant for the developing fetus. We aimed to identify principal demographic and dietary predictors of OP pesticide exposure among 450 pregnant women participating in the New York University Children’s Health and Environment Study (enrolled 2016–19). Urinary concentrations of six dialkyl phosphate (DAP) metabolites (3 dimethyl (DM) metabolites and 3 diethyl (DE) metabolites) of OP pesticides were determined at three time points across pregnancy. At mid-gestation, the Diet History Questionnaire II was used to assess women’s dietary intake over the past year. Demographic characteristics were obtained using questionnaires and/or electronic health records. We used linear mixed models to evaluate the associations of demographic and food groups with DAP metabolite levels, and partial-linear single-index (PLSI) models to analyze the contribution proportions of food groups to DAP metabolite concentrations and the dose-response relationships between them. We observed that pregnant women in NYC had lower levels of OP pesticide metabolites than pregnant populations in Europe, Asia, and other regions in the U.S. Having lower pre-pregnancy body mass index and being Asian, employed, and single were associated with higher DAP metabolite concentrations. Fruit and grain intakes were associated with higher ∑DM, ∑DE, and ∑DAP levels. ∑DE concentrations increased 9.0% (95% confidence interval (CI) = 1.2%, 17.4%) per two-fold increase in dairy consumption, whereas ∑DE concentrations decreased 1.8% (95%CI = −3.1%, −0.4%) per two-fold increase in seafood consumption. The PLSI model indicated that among the food mixture, fruit and grains were the main food groups contributed to higher levels of ∑DAP, while meat contributed to lower levels of ∑DAP. The contribution proportions of fruit, grains, and meat were 18.7%, 17.9%, and 39.3%, respectively. Our results suggest that fruit, grains, and meat are major dietary components associated with OP pesticide exposure in urban pregnant women.
Afficher plus [+] Moins [-]Elevated CO2 concentration affects survival, but not development, reproduction, or predation of the predator Hylyphantes graminicola (Araneae: Linyphiidae) Texte intégral
2021
Li, Wei | Zhao, Yao | Li, Yingying | Zhang, Shichang | Yun, Yueli | Cui, Jinjie | Peng, Yu
Elevated CO₂ concentrations can change the multi-level nutritional relationship of the ecosystem through the cascading effect of the food chain. To date, few studies have investigated the effects of elevated CO₂ concentration on the Araneae species through the tritrophic system. Hylyphantes graminicola (Araneae: Linyphiidae) is distributed widely in Asia and is a dominant predator in cotton fields. This study investigated chemical components in the food chain of cotton (Gossypium hirsutum)—cotton aphid (Aphis gossypii)—predator (H. graminicola) and compared the development, reproduction, and predation of H. graminicola under ambient (400 ppm) and elevated concentration of CO₂ (800 ppm). The results showed that the elevated CO₂ concentration increased the chemicals of cotton and cotton aphid, but it did not affect the nutrients, development, reproduction, and predation of the spider. However, the survival rate of the spider was significantly decreased in elevated CO₂. The results will further our understanding of the role of natural enemies in an environment with elevated CO₂ concentration.
Afficher plus [+] Moins [-]Deep winter intrusions of urban black carbon into a canyon near Santiago, Chile: A pathway towards Andean glaciers Texte intégral
2021
Huneeus, Nicolás | Lapere, Rémy | Mazzeo, Andrea | Ordóñez Morales, César Eduardo | Donoso, Nicolás | Munoz, Ricardo | Rutllant, José A.
Black carbon transport from the Santiago Metropolitan Area, Chile, up to the adjacent Andes Cordillera and its glaciers is of major concern. Its deposition accelerates the melting of the snowpack, which could lead to stress on water supply in addition to climate feedback. A proposed pathway for this transport is the channelling through the network of canyons that connect the urban basin to the elevated summits, as suggested by modelling studies, although no observations have validated this hypothesis so far. In this work, atmospheric measurements from a dedicated field campaign conducted in winter 2015, under severe urban pollution conditions, in Santiago and the Maipo canyon, southeast of Santiago, are analysed. Wind (speed and direction) and particulate matter concentrations measured at the surface and along vertical profiles, demonstrate intrusions of thick layers (up to 600 m above ground) of urban black carbon deep into the canyon on several occasions. Transport of PM down-valley occurs mostly through shallow layers at the surface except in connection with deep valley intrusions, when a secondary layer in altitude with return flow (down-valley) at night is observed. The transported particulate matter is mostly from the vicinity of the entrance to the canyon and uncorrelated to concentrations observed in downtown Santiago. Reanalyses data show that for 10% of the wintertime days, deep intrusions into the Maipo canyon are prevented by easterly winds advecting air pollutants away from the Andes. Also, in 23% of the cases, intrusions proceed towards a secondary north-eastward branch of the Maipo canyon, leaving 67% of the cases with favourable conditions for deep penetrations into the main Maipo canyon. Reanalyses show that the wind directions associated to the 33% anomalous cases are related to thick cloud cover and/or the development of coastal lows.
Afficher plus [+] Moins [-]