Affiner votre recherche
Résultats 211-220 de 7,200
Midgut and fat body: Multisystemic action of pyriproxyfen on non-target organism Ceraeochrysa claveri (Neuroptera: Chrysopidae) Texte intégral
2022
Scudeler, Elton Luiz | Carvalho, Shelly Favorito de | Garcia, Ana Silvia Gimenes | Santorum, Marilucia | Padovani, Carlos Roberto | Santos, Daniela Carvalho dos
Morphological tools can assist in the evaluation of effects of insecticides on non-target insects. Pyriproxyfen, a juvenile hormone analog, is known to interfere with growth and metamorphosis of insects. However, there are studies showing indirect effects on natural enemies, including green lacewings. Few prior studies describe morphological effects of pyriproxyfen on target insect organs, especially on natural enemies. Through morphological tools, this study aimed to characterize the midgut and fat body, both important organs of digestion and great metabolic activity respectively, of the predator Ceraeochrysa claveri after chronic exposure to pyriproxyfen. Larvae of C. claveri were fed Diatraea saccharalis egg clusters treated with pyriproxyfen in solution of 50 or 100 mg a.i. L⁻¹ throughout the larval stage. The biological data revealed significant increases in development time, especially in the third instar, and in cumulative mortality from the prepupal into the pupal stage. Morphological analysis of adult midgut (≤24 h old) showed damage including formation of epithelial folds, intercellular spaces, emission of cytoplasmic protrusions. Both fat body regions presented decrease of lipid droplets, vacuolization of trophocytes and mitochondrial injury featuring a multisystemic action. In both organs, pyriproxyfen exposure induced significant oxidative stress by mitochondrial superoxide production. Cytoprotective responses were induced in midgut and fat body cells by augmenting the number of cytoplasmic granules containing calcium and expression of HSP 90. Both organs proved to be efficient in presenting histopathological alterations, showing the sensitivity and applicability of this morphological tool for evaluating other insecticides in non-target organisms.
Afficher plus [+] Moins [-]Increased contribution to PM2.5 from traffic-influenced road dust in Shanghai over recent years and predictable future Texte intégral
2022
Wang, Meng | Duan, Yusen | Zhang, Zhuozhi | Huo, Juntao | Huang, Yu | Fu, Qingyan | Wang, Tao | Cao, Junji | Lee, Shun-cheng
Traffic contributes to fine particulate matter (PM₂.₅) in the atmosphere through engine exhaust emissions and road dust generation. However, the evolution of traffic related PM₂.₅ emission over recent years remains unclear, especially when various efforts to reduce emission e.g., aftertreatment technologies and high emission standards from China IV to China V, have been implemented. In this study, hourly elemental carbon (EC), a marker of primary engine exhaust emissions, and trace element of calcium (Ca), a marker of road dust, were measured at a nearby highway sampling site in Shanghai from 2016 to 2019. A random forest-based machine learning algorithm was applied to decouple the influences of meteorological variables on the measured EC and Ca, revealing the deweathered trend in exhaust emissions and road dust. After meteorological normalization, we showed that non-exhaust emissions, i.e., road dust from traffic, increased their fractional contribution to PM₂.₅ over recent years. In particular, road dust was found to be more important, as revealed by the deweathered trend of Ca fraction in PM₂.₅, increasing at 6.1% year⁻¹, more than twice that of EC (2.9% year⁻¹). This study suggests that while various efforts have been successful in reducing vehicular exhaust emissions, road dust will not abate at a similar rate. The results of this study provide insights into the trend of traffic-related emissions over recent years based on high temporal resolution monitoring data, with important implications for policymaking.
Afficher plus [+] Moins [-]Mechanistic insights into soil heavy metals desorption by biodegradable polyelectrolyte under electric field Texte intégral
2022
Wang, Yuchen | Li, Ang | Ren, Binqiao | Han, Zijian | Lin, Junhao | Zhang, Qiwei | Cao, Tingting | Cui, Chongwei
In this study, we firstly used alginate to enhance an electrokinetic technology to remediate soil contaminated with divalent heavy metals (Pb²⁺, Cu²⁺, Zn²⁺). The mechanisms of alginate-associated migration of metal ions in electric field were confirmed. Alginate resulted in a high electrical current during electrokinetic process, and soil conductivity also increased after remediation. Obvious changes in both electroosmotic flow and soil pH were observed. Moreover, these factors were affected by increasing alginate dosage. The highest Cu (95.82%) and Zn (97.33%) removal efficiencies were obtained by introducing 1 wt% alginate. Alginate can desorb Cu²⁺ and Zn²⁺ ions from soil by forming unstable gels, which could be dissociated through electrolysis. However, Pb²⁺ ions did not easily migrate out of the contaminated soil. The density functional theory (DFT) calculations show Pb²⁺ ions could form a more stable coordination sphere in metal complexes than Cu²⁺ and Zn²⁺ ions. The metal removal efficiency was decreased by increasing alginate dosage at a high level. More alginate could provide more carboxyl ligands for divalent metal ions to stabilize gels, which were difficult to dissociate by electrolysis. In summary, the results indicate it is potential for introducing alginate into an electrokinetic system to remediate Cu- and Zn- contaminated soil.
Afficher plus [+] Moins [-]Remarkable characteristics and distinct community of biofilms on the photoaged polyethylene films in riverine microcosms Texte intégral
2022
Huang, Hexinyue | Liu, Peng | Shi, Yanqi | Wu, Xiaowei | Gao, Shixiang
Recalcitrant plastics in the environment are gradually fragmented into weathered debris distinguished from their original state by the integrative action of influencing factors, such as UV light, heating and physical abrasion. As new artificial carbon-source substrates in aquatic ecosystems, plastic products can be colonized by biofilms and even utilized by microorganisms. To investigate the influences of weathering of plastics on the colonized biofilms, freshwater samples from the Yangtze River (Nanjing, China) were collected for biofilm incubation. Based on the characterization of plastics and biofilms, the effects of plastic surface properties on biofilm characteristics were revealed by the analysis of partial least squares regression (PLSR). Roughness was the principal influencing factor, while rigidity had the opposite effect to it. 16S rRNA gene high-throughput sequencing results indicated the high relative abundance of Cyanobacteria and rising proportion of harmful components (e.g., Flavobacterium) on photoaged polyethylene plastics. The microbial functional profiles (KEGG) predicted by Tax4Fun showed that the functions (e.g., membrane transport, energy metabolism, etc.) of biofilm on photoaged plastics were dissimilar with those on original ones. These findings suggested that the distinct microbial community and the adverse functional changes in biofilms on photoaged plastics potentially enhanced their environmental risks. On the other hand, 28-day cultured biofilms on original low-density polyethylene (LDPE) films were dominated by Exiguobacterium. The previously ignored potentials of this microorganism in rapidly accommodating to a hydrophobic substrate and its plastic degrading ability were both worthy of attention. Therefore, it is necessary to consider the weathering process of plastics in exploring the “plastisphere”, and to give further insights into the double-edged nature of the “plastisphere".
Afficher plus [+] Moins [-]Decrypting the synergistic action of the Fenton process and biochar addition for sustainable remediation of real technogenic soil from PAHs and heavy metals Texte intégral
2022
Mazarji, Mahmoud | Minkina, Tatiana | Sushkova, Svetlana | Mandzhieva, Saglara | Barakhov, Anatoly | Barbashev, Andrey | Dudnikova, Tamara | Lobzenko, Iliya | Giannakis, Stefanos
The objective of this study was to demonstrate the feasibility and the relevance of combining biochar with the Fenton process for the simultaneous improvement of polycyclic aromatic hydrocarbons (PAHs) degradation and immobilization of heavy metals (HMs) in real soil remediation processes at circumneutral pH. The evaluation of PAHs degradation results was performed through multivariate statistical tools, including principal component analysis (PCA) and partial least squares (PLS). PCA showed that the level of biochar amendment decisively affected the degree of degradation of total PAHs, highlighting the role of biochar in catalyzing the Fenton reaction. Moreover, the PLS model was used to interpret the important features of each PAH's physico-chemical properties and its correlation to degradation efficiency. The electron affinity of PAHs correlated positively with the degradation efficiency only if the level of biochar amendment sat at 5%, explained by the ability of biochar to transfer the electrons to PAHs, improving the Fenton-like degradation. Moreover, the addition of biochar reduced the mobilization of HMs by their fixation on their surface, reducing the Fenton-induced metal leaching from the destruction of metal-organic complexes. In overall, these results on the high immobilization rate of HMs accompanied with additional moderate PAHs degradation highlighted the advantages of using a biochar-assisted Fenton-like reaction for sustainable remediation of technogenic soil.
Afficher plus [+] Moins [-]Volatility of Springtime ambient organic aerosol derived with thermodenuder aerosol mass spectrometry in Seoul, Korea Texte intégral
2022
Kang, Hyun Gu | Kim, Youngjin | Collier, Sonya | Zhang, Qi | Kim, Hwajin
The volatilities of ambient organic aerosol (OA) components are important to forecasting OA formation with models. However, providing the OA volatility distribution inputs for models is challenging, and models often rely on measurements from chamber experiments. We measured the volatility of submicron ambient OA in Seoul during May/June of 2019 by connecting a thermodenuder to an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS). We calculated a volatility basis set (VBS) of the organic aerosol with a thermodenuder mass transfer model and data from the thermodenuder set to various temperatures (30–200 °C). We found a large discrepancy between the measured ambient VBS and a reference VBS used in air quality models, with the ambient organics being less volatile. The results suggest that a modeling study that tries to account for this discrepancy may be needed to identify the impact it has on modeling outcomes. Chamber experiments aiming to determine VBSs for specific chemical systems should address limitations caused by wall losses and incomplete modeling parameters.
Afficher plus [+] Moins [-]Long-term trends in particulate matter from wood burning in the United Kingdom: Dependence on weather and social factors Texte intégral
2022
Font, A. | Ciupek, K. | Butterfield, D. | Fuller, G.W.
Particulate matter from wood burning emissions (Cwₒₒd) was quantified at five locations in the United Kingdom (UK), comprising three rural and two urban sites between 2009 and 2021. The aethalometer method was used. Mean winter Cwₒₒd concentrations ranged from 0.26 μg m⁻³ (in rural Scotland) to 1.30 μg m⁻³ (London), which represented on average 4% (in rural environments) and 5% (urban) of PM₁₀ concentrations; and 8% of PM₂.₅. Concentrations were greatest in the evenings in winter months, with larger evening concentrations in the weekends at the urban sites. Random-forest (RF) machine learning regression models were used to reconstruct Cwₒₒd concentrations using both meteorological and temporal explanatory variables at each site. The partial dependency plots indicated that temperature and wind speed were the meteorological variables explaining the greatest variability in Cwₒₒd, with larger concentrations during cold and calm conditions. Peaks of Cwₒₒd concentrations took place during and after events that are celebrated with bonfires. These were Guy Fawkes events in the urban areas and on New Year's Day at the rural sites; the later probably related to long-range transport. Time series were built using the RF. Having removed weather influences, long-term trends of Cwₒₒd were estimated using the Theil Sen method. Trends for 2015–2021 were downward at three of the locations (London, Glasgow and rural Scotland), with rates ranging from −5.5% year⁻¹ to −2.5% year⁻¹. The replacement of old fireplaces with lower emission wood stoves might explain the decrease in Cwₒₒd especially at the urban sites The two rural sites in England observed positive trends for the same period but this was not statistically significant.
Afficher plus [+] Moins [-]Enhanced removal of sulfur-containing organic pollutants from actual wastewater by biofilm reactor: Insights of sulfur transformation and bacterial metabolic traits Texte intégral
2022
Zhang, Wei | Wu, Yang | Wu, Jing | Zheng, Xiong | Chen, Yinguang
Sulfur-containing organic pollutants in wastewater could threaten human health due to their high malodor and toxicity, and their conversion processes are more complex than inorganic sulfur compounds. Membrane aerated biofilm reactor (MABR), as a novel and environmentally-friendly biofilm-based technology, is able to remove inorganic sulfur in synthetic wastewater. However, it is unknown how sulfur-containing organic pollutants in actual wastewater are transformed in MABR system. This work demonstrated the feasibility of MABR to eliminate sulfur-containing organic pollutants in actual wastewater, and the removal efficiency could be reached at approximately 100%. Meanwhile, over 70% of sulfur-containing organic contaminants were transformed to SO₄²⁻ during the long-term operation. Further analysis indicated that the functional bacteria that participated in sulfur transformation and carbohydrates degradation (e.g., Chujaibacter, Microscillaceaesp., and Thiobacillus) were evidently enriched when treating actual wastewater. Moreover, the critical metabolic pathways (e.g., sulfur metabolism, glycolysis metabolism, and pyruvate metabolism), and the corresponding genetic expressions (e.g., nrrA, tauA, tauC, sorA, and SUOX) were evidently up-regulated during long-term operation, which was beneficial for the transformation of sulfur-containing organic pollutants in actual wastewater by MABR. This work would expand the application of MABR for treating the actual sulfur-containing organic wastewater and provide an in-depth understanding of the organic sulfur transformation in MABR.
Afficher plus [+] Moins [-]The behavior of organic sulfur species in fuel during chemical looping gasification Texte intégral
2022
Wang, Lulu | Shen, Laihong | Long, Yuyang | Shen, Dongsheng | Jiang, Shouxi
Uncoupling chemical looping gasification (CLG), the organic sulfur evolution was simulated and explored qualitatively and quantitatively using typical sulfur compounds on TG-MS and temperature-programmed fixed bed. The HS radical in the reductive atmosphere easier converted to H₂S and COS. H₂O activated the evolution of S which was stably bonded to carbon, and H₂ generated from gasification and oxidation of reductive Fe by H₂O contributed to the release of sulfur. The proportion of H₂S released from sulfur compounds was greater than 87% in steam gasification, and more than 60% during CLG. Oxygen carriers promoted the conversion of sulfur to SO₂ in the mid-temperature region (500 °C–700 °C), and H₂S in the high temperature region (700 °C–900 °C). Sulfur species played a pivotal role in sulfur evolution at low temperature of CLG. The organic sulfur in mercaptan and benzyl were more easily converted and escaped than in thiophene and phenyl. The thermal stability of sulfur species, the presence of steam and OC affected the initial temperature and peak concentration of gas sulfur release as well as sulfur distribution. Consequently, CLG strengthened the sulfur evolution, and made it possible to targeted restructure the distribution of sulfur by regulating process parameters, or blending fuel with different sulfur species for emission reduction, and selective conversion of sulfur.
Afficher plus [+] Moins [-]Phase transformation of silica particles in coal and biomass combustion processes Texte intégral
2022
Yang, Xuezhi | Lu, Dawei | Zhu, Bao | Sun, Zhendong | Li, Gang | Li, Jie | Liu, Qian | Jiang, Guibin
Inhalation of respirable silica particles can cause serious lung diseases (e.g., silicosis and lung cancer), and the toxicity of respirable silica is highly dependent on its crystal form. Common combustion processes such as coal and biomass burning can provide high temperature environments that may alter the crystal forms of silica and thus affect its toxic effects. Although crystalline silica (i.e., quartz, tridymite, and cristobalite) were widely found at different temperatures during the burning processes, the sources and crystal transformation pathways of silica in the burning processes are still not well understood. Here, we investigate the crystal transformation of silica in the coal and biomass combustion processes and clarify the detailed transformation pathways of silica for the first time. Specifically, in coal burning process, amorphous silica can transform into quartz and cristobalite starting at 1100 °C, and quartz transforms into cristobalite starting at 1200 °C; in biomass burning process, amorphous silica can transform into cristobalite starting at 800 °C, and cristobalite transforms into tridymite starting at 1000 °C. These transformation temperatures are significantly lower than those predicted by the classic theory due to possibly the catalysis of coexisting metal elements (e.g., aluminum, iron, and potassium). Our results not only enable a deeper understanding on the combustion-induced crystal transformation of silica, but also contribute to the mitigation of population exposure to respirable silica.
Afficher plus [+] Moins [-]