Affiner votre recherche
Résultats 2101-2110 de 4,308
Variation of Catalyst Structure and Catalytic Activity During Catalyst Preparation for Catalytic Ozonation of Heavy Oil Produced Water Texte intégral
2017
Zhu, Qiushi | Chen, Feifei | Guo, Shaohui | Chen, Ximing | Chen, Jinfu
Ni, Cu, and Ni-Cu metal oxides supported on granular activated carbon (GAC) were synthesized and used in catalytic ozonation of heavy oil produced water. The effect of preparation conditions on their catalyst composition, catalyst structure, and catalytic activity was investigated. The catalyst structure was characterized by X-ray power diffraction (XRD). The results revealed that the Ni-Cu/GAC has the highest catalytic activity, followed by Cu/GAC and Ni/GAC. Metal oxide loading rate depended on impregnation process, whereas dispersion of metal oxides was controlled by calcination process. The XRD analysis showed that the principal active phase was Cu₂O for Cu/GAC and Ni-Cu/GAC catalyst and NiO for Ni/GAC catalyst. The most active plane was Cu₂O₍₂₀₀₎ and then followed by Cu₂O₍₁₁₀₎ and Cu₂O₍₁₁₁₎ for Cu-supported catalysts. Higher calcination temperature and time favored the generation of Cu₂O but increased the crystalline diameter. It also suggested that promoting the generation of NiO and Cu₂O phase and reducing the crystalline diameter could improve the catalytic activity. During Ni-Cu/GAC preparation, existence of Ni(NO₃)₂ could accelerate the adsorption of Cu(NO₃)₂, promoting the generation of Cu₂O, and improve the dispersion of Cu₂O phase. Graphical Abstract ᅟ
Afficher plus [+] Moins [-]Water Use and Treatment in Container-Grown Specialty Crop Production: A Review Texte intégral
2017
Majsztrik, John C. | Fernandez, R Thomas | Fisher, Paul R. | Hitchcock, Daniel R. | Lea-Cox, John | Owen, James S., Jr | Oki, Lorence R. | White, Sarah A.
While governments and individuals strive to maintain the availability of high-quality water resources, many factors can “change the landscape” of water availability and quality, including drought, climate change, saltwater intrusion, aquifer depletion, population increases, and policy changes. Specialty crop producers, including nursery and greenhouse container operations, rely heavily on available high-quality water from surface and groundwater sources for crop production. Ideally, these growers should focus on increasing water application efficiency through proper construction and maintenance of irrigation systems, and timing of irrigation to minimize water and sediment runoff, which serve as the transport mechanism for agrichemical inputs and pathogens. Rainfall and irrigation runoff from specialty crop operations can contribute to impairment of groundwater and surface water resources both on-farm and into the surrounding environment. This review focuses on multiple facets of water use, reuse, and runoff in nursery and greenhouse production including current and future regulations, typical water contaminants in production runoff and available remediation technologies, and minimizing water loss and runoff (both on-site and off-site). Water filtration and treatment for the removal of sediment, pathogens, and agrichemicals are discussed, highlighting not only existing understanding but also knowledge gaps. Container-grown crop producers can either adopt research-based best management practices proactively to minimize the economic and environmental risk of limited access to high-quality water, be required to change by external factors such as regulations and fines, or adapt production practices over time as a result of changing climate conditions.
Afficher plus [+] Moins [-]Removal of Diclofenac, Ketoprofen, and Carbamazepine from Simulated Drinking Water by Advanced Oxidation in a Model Reactor Texte intégral
2017
Jankunaite, Dalia | Tichonovas, Martynas | Buivydiene, Dalia | Radziuniene, Inga | Racys, Viktoras | Krugly, Edvinas
The objective of this study was to examine the degradation of pharmaceutical compounds diclofenac, ketoprofen, and carbamazepine in a bench-scale batch type advanced oxidation treatment system combining non-thermal plasma and UV photocatalysis. The key factors affecting pollutant decomposition were studied in a dielectric barrier discharge (DBD) plasma reactor. This was followed by the comparative assessment of various advanced oxidation processes (O₃; UV+O₃; TiO₂+O₃; TiO₂+UV+O₃) in a UV-photocatalysis reactor. The overall effectiveness of the treatment process was established according to the decomposition efficiency of the individual compound determined by high-performance liquid chromatography with ultraviolet detection (HPLC/UV), removal of total organic carbon (TOC), energy consumption, and acute toxicity test with Chironomus sp. larvae. Depending on the pharmaceutical compound and oxidation system, complete decomposition of the target compound was reached within 3–6 min. The TOC removal ranged between 25 and 100% with energy consumption varying 3.1–10.6 MJ/g. TiO₂+UV+O₃ revealed slightly higher toxicity of treated water as compared to TiO₂+O₃ (22–50% vs 17–33% mortality rate of Chironomus sp. larvae). TiO₂+O₃ and TiO₂+UV+O₃ systems proved as an efficient combination of AO processes for the decomposition of pharmaceuticals in water, as long as the treatment duration is sufficient to fully mineralize organic substances.
Afficher plus [+] Moins [-]Study on Sorption Characteristics of Uranium onto Biochar Derived from Eucalyptus Wood Texte intégral
2017
Mishra, Vijayakriti | Sureshkumar, M. K. | Gupta, Nidhi | Kaushik, C. P.
In this study, the sorption characteristics of U(VI) onto eucalyptus biochar as a function of various operating parameters such as solution pH, initial metal ion concentration, contact time and ionic strength of the medium are reported. Biochar was characterised using various techniques such as CHNS element analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). SEM analysis showed the presence of micro- and macropores in the sorbent, and FTIR spectra confirmed the presence of functional groups like carboxylic (−COOH), hydroxyls(−OH), carbonyls(–C=O), etc. Maximum sorption of about 95% is found to occur in the pH range of 5 to 6. U(VI) sorption onto biochar reached equilibrium within 20 min at pH 5.5. The kinetic data were analysed using both pseudo-first-order and pseudo-second-order kinetic models, and the latter is found to be more appropriate to explain the observed kinetics. The equilibrium data were correlated with Langmuir and Freundlich models, and the maximum monolayer adsorption capacity obtained from the Langmuir model was 27.2 mg/g at 293 K. From EDS, FTIR and XPS measurements, it is found that the sorption process involves chemical interaction between the U(VI) and the surface functional groups on the adsorbent. Efficient removal of low level of uranium from ammonium diuranate supernatant demonstrates its utility as sorbent for waste water treatment.
Afficher plus [+] Moins [-]Remediation of Radiocesium-137 Affected Soil Using Napiergrass Under Different Planting Density and Cutting Frequency Regimes Texte intégral
2017
Kang, Dong-Jin | Ishii, Yasuyuki | Tazoe, Hirofumi | Isobe, Katsunori | Higo, Masao | Hosoda, Masahiro | Yamada, Masatoshi | Tokonami, Shinji
This study investigated the use of napiergrass (Pennisetum purpureum Schum.) to remediate soils highly contaminated with radiocesium-137 (¹³⁷Cs) in the town of Namie, Fukushima Prefecture, which is located around 9 km northwest of the Fukushima Daiichi Nuclear Power Plant, Japan. Field experiments were performed to investigate the remediation effects using two sites (paddy or upland grassland) as replicates, three planting densities (low, medium, and high density), and two different cutting frequencies (cut once or twice a year) over 2 consecutive years. Napiergrass can be more efficient than sorghum for ¹³⁷Cs remediation. The maximum ¹³⁷Cs removal ratio (CR, %) in napiergrass achieved with high-density planting (11 plants m⁻²) was between 0.32 and 0.57%. However, cutting frequency did not affect the CR. Higher biomass leads to a dilution of ¹³⁷Cs in cutting frequency. Therefore, we suggest that the greatest CR could be achieved through a high above ground biomass (high-density planting).
Afficher plus [+] Moins [-]Responses of Arbuscular Mycorrhizal Fungi and Grass Leersia hexandra Swartz Exposed to Soil with Crude Oil Texte intégral
2017
Alejandro-Córdova, A. | Rivera-Cruz, M. C. | Hernández-Cuevas, L. V. | Alarcón, A. | Trujillo-Narcía, A. | la Cruz, R García-de
This study evaluated the effect of crude oil on the intraradical structures and morphospecies of arbuscular mycorrhizal fungi (AMF) and on the aerial and root dry matter of the grass Leersia hexandra Swartz in order to propose indicators of toxicity. An experiment was conducted in a microtunnel for 180 days. The concentrations (g kg⁻¹) of crude oil in the Gleysol were 0.693 (control), 3, 10, 30, 60, 90, 120, 150, and 180. The growth of intraradical hyphae, arbuscules, vesicles, and spores in soil was stimulated by crude oil concentrations of 3, 10, 30 and 60 g, but concentrations of 90, 120, 150, and 180 g kg⁻¹ inhibited it. Eight morphospecies of AMF were identified. The number of spores of Rhizophagus fasciculatus, Rhizophagus intraradices, Funneliformis geosporum, Diversispora eburnea, and Ambispora gerdemannii showed sensitivity to the concentration of crude oil (index values were lower than one). The number of spores of Diversispora sp. was stimulated by exposure to crude oil, with non-toxic values for the eight concentrations. The index based on the aerial dry matter of L. hexandra showed toxicity values lower than one with crude oil concentrations of 60, 90, 120, 150, and 180 g kg⁻¹, but the root dry matter showed non-toxic values with the eight concentrations. We suggest using the number of spores and morphospecies as an index of toxicity of crude oil and recommend using Diversispora sp. and L. hexandra for the phytoremediation of Gleysol contaminated with crude oil in the Mexican humid tropics.
Afficher plus [+] Moins [-]Influences of Coal Ash Leachates and Emergent Macrophytes on Water Quality in Wetland Microcosms Texte intégral
2017
Olson, LeifH. | Misenheimer, JohnC. | Nelson, ClayM. | Bradham, KarenD. | Richardson, CurtisJ.
The storage of coal combustion residue (CCR) in surface water impoundments may have an impact on nearby water quality and aquatic ecosystems. CCR contains leachable trace elements that can enter nearby waters through spills and monitored discharge. It is important, therefore, to understand their environmental fate in affected systems. This experiment examined trace element leachability into freshwater from fly ash (FA), the most common form of CCR. The effects on water quality of FA derived from both high and low sulfur coal sources as well as the influences of two different emergent macrophytes, Juncus effusus and Eleocharis quadrangulata, were evaluated in wetland microcosms. FA leachate dosings increased water electric conductivity (EC), altered pH, and, most notably, elevated the concentrations of boron (B), molybdenum (Mo), and manganese (Mn). The presence of either macrophyte species helped reduce elevated EC, and B, Mo, and Mn concentrations over time, relative to microcosms containing no plants. B and Mo appeared to bioaccumulate in the plant tissue from the water when elevated by FA dosing, while Mn was not higher in plants dosed with FA leachates. The results of this study indicate that emergent macrophytes could help ameliorate downstream water contamination from CCR storage facilities and could potentially be utilized in wetland filtration systems to treat CCR wastewater before discharge. Additionally, measuring elevated B and Mo in aquatic plants may have potential as a monitoring tool for downstream CCR contamination.
Afficher plus [+] Moins [-]Exposure of children aged 0–7 years to perfluorinated compounds in Foshan, China Texte intégral
2017
Zhang, Ruijia | Wei, Qinzhi | Li, Minjie | Li, Zihuan | Lin, Wenting | Ma, Ande | Zhou, Zhifeng
To evaluate the exposure of children to 14 perfluorinated compounds (PFCs) in a typical and representative industrial city, plasma samples from 476 children aged 0–7 years in Foshan, China, were analysed. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were detected in 100% of the samples, accounting for 82.27 and 11.46% of the total PFC concentrations, respectively, while PFOS peaked at age 0–1 years, for which the mean and median concentrations were 113.71 and 83.65 ng/mL, respectively, while PFOA peaked at age 3–4 years, for which the mean and median concentrations were 10.68 and 6.58 ng/mL, respectively. The concentrations of PFOS, perfluorohexane sulfonate and perfluorohexanoic acid decreased with age among children aged 0–7 years, and no gender-related differences were found in the concentrations of PFCs. A high correlation was found among all PFCs, especially between PFCs of similar carbon chains (r = 0.161–0.695, p < 0.05). In addition, the concentrations of PFOS and PFOA in children’s plasma in Foshan were up to 40-fold higher than those reported in China and other countries. In conclusion, children in Foshan have extensive exposure to PFCs, especially in infancy. Further studies are needed to explore the impact of PFCs on children who live in a typical and representative industrial city in China. Graphical abstract ᅟ
Afficher plus [+] Moins [-]Enhanced Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino-Functionalized Silica-Coated Titanium Dioxide Nanocomposite: A Cost-Effective Tool for Bioremediation Texte intégral
2017
Ali, Misha | Husain, Qayyum | Alam, Nida | Ahmad, Masood
This study describes the immobilization of ginger peroxidase on amino-functionalized silica-coated titanium dioxide nanocomposite and its application in bioremediation process. A dramatic enhancement in enzyme activity was observed after immobilization on nanosupport which was evident from the effectiveness factor (η) value of 1.76. Immobilization of enzyme on nanosupport was confirmed by transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. V ₘₐₓ of the enzyme was changed to 35.01 μmol L⁻¹ min⁻¹ from 8.42 μmol L⁻¹ min⁻¹ after immobilization on nanocomposite, which was a fourfold increase as compared to the free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of the enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process, i.e., 90% of the dye was decolorized within 1.5 h as compared to the free enzyme decolorizing only 69% of the dye in the same period. Our results clearly demonstrate that this nanobioconjugate with enhanced catalytic activity, high stability, and very good reusability has remarkable potential for the treatment of aromatic pollutants present in wastewater. Graphical Abstract Schematic representation of immobilization of ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite and its use in dye decolorization process.
Afficher plus [+] Moins [-]Application of Green Manure and Pig Manure to Cd-Contaminated Paddy Soil Increases the Risk of Cd Uptake by Rice and Cd Downward Migration into Groundwater: Field Micro-Plot Trials Texte intégral
2017
Wang, Genmei | Zhou, Lixiang
Land application of organic manure, crop residue, and biosolid, an important means for the disposal and recycling of wastes, has been shown to significantly increase the amount of dissolved organic matter (DOM) in soil. However, limited information is available on the dynamics of DOM, the concentration is usually expressed by dissolved organic carbon (DOC), and its influence on Cd behaviors in paddy soil amended with and without organic materials during rice (kinmaze) growing season. In this study, in situ field experiments were conducted to investigate the dynamics of DOC in paddy soil amended with green manure (GM), pig manure (PM), and chemical fertilizer (F) and its effect on Cd mobility and bioavailability. The results showed that DOC concentrations in soil solutions extracted from different depths were higher in GM and PM plots than those in F plot, and DOC concentrations all declined with time and rice growth. DOC concentrations in the root zone soil for all treatments were higher than those in the non-root zone due to root exudation and the higher pH value. The temporal dynamics of DOC in the root zone were found to be correlated to rice growth stage, as DOC concentrations decreased in the initial stage (week 1 to 6) of rice seedling and then gradually increased and reached the highest levels with 30.42 mg DOC L⁻¹ for GM, 28.88 mg DOC L⁻¹ for PM, and 19.19 mg DOC L⁻¹ for F at rice heading and flowering stage (week 10), hereafter decreased again until when the rice was harvested. However, soil DOC in the non-root zone exhibited a continuous decrease trend and remained at a relatively low level after week 10 with 15.36 mg DOC L⁻¹ for GM, 15.31 mg DOC L⁻¹ for PM, and 8.43 mg DOC L⁻¹ for F. The dynamics of water soluble Cd displayed statistically significant positive relationship with DOC (r ₀.₀₁ = 0.765, n = 9) regardless of soil depth and root presence/absence, suggesting that DOC enhanced the mobility and transport of through the formation of Cd-DOC complexes. As a result, DOC could increase the potential uptake of Cd by rice as well as the downward Cd migration to deeper soil. In these experiments, the uptake of Cd by rice grown in the GM and PM plots reached 5.55 and 3.71 mg plot⁻¹, respectively, which were much higher than that in the F plot with 1.88 mg plot⁻¹. The amounts of Cd downward migration were 17.0 mg plot⁻¹ for GM plot, 14.74 mg plot⁻¹ for PM plot, and 4.13 mg plot⁻¹ for F plot, respectively. It could be concluded that the application of green manure and pig manure to Cd-contaminated paddy soil will increase the risk of Cd uptake by rice and Cd downward migration into groundwater. For this reason, care should be taken when organic manures was applied to contaminated soil to remediate or alleviate soil pollution and maintain soil fertility as well as provide nutrients for plant growth.
Afficher plus [+] Moins [-]