Affiner votre recherche
Résultats 2101-2110 de 7,979
Exposure to hexafluoropropylene oxide dimer acid (HFPO-DA) disturbs the gut barrier function and gut microbiota in mice
2021
Xie, Xiaoxian | Zhou, Jiafeng | Hu, Luting | Shu, Ruonan | Zhang, Mengya | Xiong, Ze | Wu, Fengchun | Fu, Zhengwei
Hexafluoropropylene oxide dimer acid (HFPO-DA) is the substitute for perfluoro octanoic acid (PFOA), and recently it has been detected in environmental water samples worldwide and has multiple toxicities. However, whether it will affect the intestines and gut microbiota remains unclear. In this study, in order to evaluate the gut toxicity of HFPO-DA in mammals, male mice were orally exposed to 0, 2, 20, 200 μg/L HFPO-DA, respectively, for 6 weeks. Our results showed that HFPO-DA exposure caused colonic inflammation which was coupled with increased TNF-α levels in serum and increased mRNA expression levels of TNF-α, p65, TLR4, MCP-1 of the colon in mice after exposure to 200 μg/L HFPO-DA. We also found that HFPO-DA exposure induced the decreased mRNA expression levels and protein levels of MUC2 and ZO-1, which means the dysfunction of gut barrier in the colon. In the ileum, we found that HFPO-DA exposure induced the increased mRNA expression levels of various inflammatory factors, but no obvious changes was found to barrier function. Additionally, HFPO-DA exposure caused the imbalance of cecal gut microbiota and changes of cecal microbiota diversity. Taken together, all these results indicate the potential gut toxicity of HFPO-DA and is perceived as a major problem of health risk that affects the inflammation, gut barrier dysfunction, and gut microbiota disturbance in mammals.
Afficher plus [+] Moins [-]FAIRCHAIN project overview
2021
Gésan-Guiziou, Geneviève | Science et Technologie du Lait et de l'Oeuf (STLO) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Union Européenne
International audience
Afficher plus [+] Moins [-]Passive environmental residential exposure to agricultural pesticides and hematological malignancies in the general population: a systematic review
2021
Roingeard, Camille | Monnereau, Alain | Goujon, Stephanie | Orazio, Sebastien | Bouvier, Ghislaine | Printemps-Vacquier, Blandine | Bordeaux population health (BPH) ; Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM) | Epidemiology of childhood and adolescent cancer | Epidémiologie des cancers de l'enfant et de l'adolescent (EPICEA [CRESS - U1153 / UMR_A 1125]) ; Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques (CRESS (U1153 / UMR_A 1125)) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Incidence rates of hematological malignancies have been constantly increasing over the past 40 years. In parallel, an expanding use of agricultural pesticides has been observed. Only a limited number of studies investigated the link between hematological malignancies risk and passive environmental residential exposure to agricultural pesticides in the general population. The purpose of our review was to summarize the current state of knowledge on that question. A systematic literature search was conducted using PubMed and Scopus databases. We built a scoring scale to appraise relevance of each selected articles. We included 23 publications: 13 ecological studies, 9 case-control studies and a cohort study. Positive associations were reported between hematological malignancies and individual pesticides, pesticide groups, all pesticides without distinction, or some crop types. Relevance score was highly various across studies regardless of their design. Children studies were the majority and had overall higher relevance scores. The effect of passive environmental residential exposure to agricultural pesticides on hematological malignancies risk is suggested by the literature. The main limitation of the literature available is the high heterogeneity across studies, especially in terms of exposure assessment approach. Further studies with high methodological relevance should be conducted.
Afficher plus [+] Moins [-]Transient effect of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) on the cosmopolitan marine diatom Chaetoceros decipiens-lorenzianus
2021
M’rabet, Charaf | Kéfi–daly Yahia, Ons | Chomerat, Nicolas | Zentz, Frederic | Bilien, Gwenael | Pringault, Olivier
Incubation under controlled laboratory conditions were performed to assess the toxic effects of two plastic derived chemicals, bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), on the growth, photosynthetic efficiency and photosynthetic activity of the cosmopolitan diatom Chaetoceros decipiens-lorenzianus. Non-axenic diatom cells were exposed to concentrations of BPA and DEHP (separately and in mixture), mimicking concentrations observed in contaminated marine ecosystems, for seven days. Upon short-term exposure (i.e., during the first 48 h), BPA and DEHP induced a slight but significant stimulation of biomass and photosynthetic activity relative to the control, whereas, no significant impact was observed on the photosynthetic efficiency. Nevertheless, this pattern was transient. The stimulation was followed by a return to control conditions for all treatments at the end of incubation. These results showed that the cosmopolitan diatom Chaetoceros was not impacted by representative in situ concentrations of plastic derivatives, thus confirming its ability to thrive in coastal anthropogenic environments.
Afficher plus [+] Moins [-]Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper
2021
Ferreira Araujo, Daniel | Knoery, Joel | Briant, Nicolas | Ponzevera, Emmanuel | Chouvelon, Tiphaine | Auby, Isabelle | Yepez, Santiago | Bruzac, Sandrine | Sireau, Teddy | Pellouin-grouhel, Anne | Akcha, Farida
Metal release into the environment from anthropogenic activities may endanger ecosystems and human health. However, identifying and quantifying anthropogenic metal bioaccumulation in organisms remain a challenging task. In this work, we assess Cu isotopes in Pacific oysters (C. gigas) as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental Cu inputs. At the end of their 12-month long transplantation period, the oysters’ Cu body burdens had increased, and was shifted toward more positive δ65Cu values. The gradient of Cu isotope compositions observed for oysters sampling stations was consistent with relative geographic distance and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted oysters. The positive δ65Cu values and high bioaccumulated levels of Cu in transplanted oysters support that continental emissions are dominantly anthropogenic. However, identifying specific pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source discrimination. Thus, using Cu as an example, this work combines for the first time a well-known caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives for further studies to overcome them.
Afficher plus [+] Moins [-]FAIRCHAIN project overview
2021
Gésan-Guiziou, Geneviève
Reactivity of secondary phases in weathered limestone using isotopic tracers (D and 18O): the case study of the 'Tribunal Administratif' of Paris
2021
Gentaz, Lucile | Saheb, Mandana | Verney-Carron, Aurélie | Sessegolo, Loryelle | Chabas, Anne | Nuns, Nicolas | Remusat, Laurent | Gonzalez-Cano, Adriana | Fourdrin, Chloé | Mertz, Jean-Didier | Verney-Carron, Aurélie | Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) | Institut Michel Eugène Chevreul - FR 2638 (IMEC) ; Université d'Artois (UA)-Centrale Lille-Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC) ; Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Géomatériaux et Environnement (LGE ) ; Université Gustave Eiffel | Laboratoire de recherche des monuments historiques (LRMH) ; Centre de Recherche sur la Conservation (CRC ) ; Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS)
International audience | For a long time, limestone has been massively used in stone building and monuments because of its easy extraction and common presence in the landscape. On ancient monuments, mostly built in urban areas, it is exposed to urban-borne pollutants responsible for specific alteration mechanisms and weathering kinetics. Especially, the dissolution of calcite and the precipitation of new phases will affect the limestone pore network, modify the stones capillary properties, and influence the further alteration. In order to better understand these processes, an altered limestone sample from 'Tribunal Administratif' (TA) in Paris was studied. The main secondary phase was found to be syngenite, which can be explained by the location of the sample close to the soil, a potential source of K (fertilizers). This phase is more soluble than gypsum that is commonly found on altered limestone. In order to assess the reactivity of the system (limestone and new phases), oxygen and hydrogen isotopes were used to trace the transfer of water ((D2O)-O-18) and identify the location of the reactive areas (susceptible to alteration). For that, TA samples were exposed in a climatic chamber to relative humidity (RH) cycles (25% RH for 2.5 days and 85% RH for 4.5 days) for 2 months with a (D2O)-O-18 vapor to simulate alteration occurring in conditions sheltered from the rain. Results have shown that the water vapor easily circulates deep in the sample and reacts preferentially with syngenite the most reactive phase (compared with calcite and quartz). This phase could evolve in gypsum when exposed to an environment different from the one resulting in its formation.
Afficher plus [+] Moins [-]Dark septate endophytes isolated from non-hyperaccumulator plants can increase phytoextraction of Cd and Zn by the hyperaccumulator Noccaea caerulescens
2021
Yung, Loïc | Blaudez, Damien | Maurice, Nicolas | Azou-Barré, Antonin | Sirguey, Catherine | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Sols et Environnement (LSE) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Pôle Scientifique OTELo Université de Lorraine | Deepsurf ANR-15-IDEX-04-LUE | Endoextract project | GISFI | ANR-15-IDEX-0004,LUE,Isite LUE(2015)
International audience | Dark septate endophytes (DSEs) can improve plant stress tolerance by promoting growth and affecting element accumulation. Due to its ability to accumulate high Cd, Zn, and Ni concentrations in its shoots, Noccaea caerulescens is considered a promising candidate for phytoextraction in the field. However, the ability of DSEs to improve trace element (TE) phytoextraction with N. caerulescens has not yet been studied. The aim of this study was therefore to determine the ability of five DSE strains, previously isolated from poplar roots collected at different TE-contaminated sites, to improve plant development, mineral nutrient status, and metal accumulation by N. caerulescens during a pot experiment using two soils differing in their level of TE contamination. Microscopic observations revealed that the tested DSE strains effectively colonised the roots of N. caerulescens. In the highly contaminated (HC) soil, a threefold increase in root biomass was found in plants inoculated with the Leptodontidium sp. Pr30 strain compared to that in the non-inoculated condition; however, the plant nutrient status was not affected. In contrast, the two strains Phialophora mustea Pr27 and Leptodontidium sp. Me07 had positive effects on the mineral nutrient status of plants without significantly modifying their biomass. Compared to non-inoculated plants cultivated on HC soil, Pr27- and Pr30-inoculated plants extracted more Zn (+ 30%) and Cd (+ 90%), respectively. In conclusion, we demonstrated that the responses of N. caerulescens to DSE inoculation ranged from neutral to beneficial and we identified two strains (i.e. Leptodontidium sp. (Pr30) and Phialophora mustea (Pr27)) isolated from poplar that appeared promising as they increased the amounts of Zn and Cd extracted by improving plant growth and/or TE accumulation by N. caerulescens. These results generate interest in further characterising the DSEs that naturally colonise N. caerulescens and testing their ability to improve phytoextraction.
Afficher plus [+] Moins [-]Evaluation of direct and biochar carrier-based inoculation of Bacillus sp. on As- and Pb-contaminated technosol: effect on metal(loid) availability, Salix viminalis growth, and soil microbial diversity/activity
2021
Lebrun, Manhattan | Miard, Florie | Bucci, Antonio | Trupiano, Dalila | Nandillon, Romain | Naclerio, Gino | Scippa, Gabriella | Morabito, Domenico | Bourgerie, Sylvain | Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) ; Université d'Orléans (UO)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Università degli Studi del Molise = University of Molise (UNIMOL) | Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO) ; Bureau de Recherches Géologiques et Minières (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS) | Biogéosystèmes Continentaux - UMR7327 ; Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO) ; Bureau de Recherches Géologiques et Minières (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS) | Bureau de Recherches Géologiques et Minières (BRGM) | IDDEA (IDDEA)
International audience | Phytomanagement manipulates the soil-plant system to lower the risk posed by contaminated soils. In this process, the addition of amendments, such as biochar, and bacteria can improve the fertility of poor contaminated soils and consequently ameliorate plant growth. A number of studies based on the inoculation of soil with microorganisms of the genus Bacillus, previously isolated from contaminated sites, revealed positive effects on soil properties and plant growth. Furthermore, when the Bacillus isolates were used in association with biochar, better results were obtained, as biochar can ameliorate soil properties and serve as habitat for microorganisms. Accordingly, a mesocosm study was set-up using a mining technosol amended with biochar and inoculated with an endogenous Bacillus isolate, to evaluate the effect of inoculation on soil properties, metal(loid) immobilization, and Salix viminalis growth. Two inoculation methods were compared: (1) direct inoculation of bacteria (Bacillus sp.) and (2) inoculation using biochar as a carrier. Results showed that the Bacillus isolate modified soil properties and ameliorated plant growth, while having a reduced effect on metal(loid) accumulation. The microbial activity was also stimulated, and the community composition was shifted, more importantly when biochar was used as a carrier. In conclusion, this research revealed an improvement of the plant growth and microbial activity after the addition of the endogenous bacterium to the analyzed former mining soil, with better results recorded when a carrier was used.
Afficher plus [+] Moins [-]Adsorption and degradation of the herbicide nicosulfuron in a stagnic Luvisol and Vermic Umbrisol cultivated under conventional or conservation agriculture
2021
Cueff, Sixtine | Alletto, Lionel | Dumeny, Valerie | Benoit, Pierre | Pot, Valerie | AGroécologie, Innovations, teRritoires (AGIR) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Agence de l'Eau Adour-Garonne | Occitanie Region (BAG'AGES project) | Occitanie Region (BAG'AGES CISOL project)
International audience | The main goals of conservation agriculture are to enhance soil fertility and reduce soil degradation, especially through erosion. However, conservation agriculture practices can increase the risk of contamination by pesticides, mainly through vertical transfer via water flow. Better understanding of their sorption and degradation processes is thus needed in conservation agriculture as they control the amount of pesticide available for vertical transfer. The purpose of our study was to investigate the sorption and degradation processes of nicosulfuron in soil profiles (up to 90 cm deep) of a Vermic Umbrisol and a Stagnic Luvisol managed either in conventional or in conservation agriculture. Two laboratory sorption and incubation experiments were performed. Low sorption was observed regardless of the soil type, agricultural management or depth, with a maximum value of 1.3 +/- 2.0 L kg(-1). By the end of the experiment (91 days), nicosulfuron mineralisation in the Vermic Umbrisol was similar for the two types of agricultural management and rather depended on soil depth (29.0 +/- 2.3% in the 0-60-cm layers against 7.5 +/- 1.4% in the 60-90 cm). In the Stagnic Luvisol, nicosulfuron mineralisation reached similar value in every layer of the conservation agriculture plot (26.5% +/- 0.7%). On the conventional tillage plot, mineralisation decreased in the deepest layer (25-60 cm) reaching only 18.4 +/- 6.9% of the applied nicosulfuron. Regardless of the soil type or agricultural management, non-extractable residue formation was identified as the main dissipation process of nicosulfuron (45.1 +/- 8.5% and 50.2 +/- 7.0% under conventional and conservation agriculture respectively after 91 days). In our study, nicosulfuron behaved similarly in the Vermic Umbrisol regardless of the agricultural management, whereas the risk of transfer to groundwater seemed lower in the Stagnic Luvisol under conservation agriculture.
Afficher plus [+] Moins [-]