Affiner votre recherche
Résultats 221-230 de 7,250
Advances and prospects on the aquatic plant coupled with sediment microbial fuel cell system
2022
Li, Benhang | Xu, Dandan | Feng, Li | Liu, Yongze | Zhang, Liqiu
Energy resource scarcity and sediment pollution perniciousness have become enormous challenges, to which research has been focused on energy recovery and recycle technologies to solve both above problems. The organic matter stored in anoxic sediments of freshwater ecosystem represents a tremendous potential energy source. The system of aquatic plant coupled with sediment microbial fuel cell (AP-SMFC) has attracted much attention as a more feasible, economical and eco-friendly way to remediate sediment and surface water and generate electricity. However, the research on AP-SMFC has only been carried out in the last decade, and relevant studies have not been well summarized. In this review, the advances and prospects on AP-SMFC were systematically introduced. Firstly, the annual publication counts and keywords co-occurrence cluster of AP-SMFC were identified and visualized by resorting to the CiteSpace software, and the result showed that the research on AP-SMFC increased significantly in the last decade on the whole and will continue to increase. The bibliometric results provided valuable references and information on potential research directions for future studies. And then, the research progress and reaction mechanism of AP-SMFC were systematically described. Thirdly, the performance of AP-SMFC, including nutrients removal, organic contaminants removal, and electricity generation, was systematically summarized. AP-SMFC can enhance the removal of pollutants and electricity generation compared with SMFC without AP, and is considered to be an ideal technology for pollutants removal and resource recovery. Finally, the current challenges and future perspectives were summarized and prospected. Therefore, the review could serve as a guide for the new entrants to the field and further development of AP-SMFC application.
Afficher plus [+] Moins [-]Secondary organic aerosol formation and source contributions over east China in summertime
2022
Li, Jie | Han, Zhiwei | Wu, Jian | Tao, Jun | Li, Jiawei | Sun, Yele | Liang, Lin | Liang, Mingjie | Wang, Qin'geng
Various precursor emissions and chemical mechanisms for secondary organic aerosol (SOA) formation were incorporated into a regional air quality model system (RAQMS) and applied to investigate the distribution, composition, and source contribution of SOA over east China in summer 2018. Model comparison against a variety of observations at a national scale demonstrated that the model was able to reasonably reproduce meteorological variables, O₃ and PM₂.₅ concentrations, and the model simulated SOA concentration generally agreed with observations, with the overall NMB of 7.0% and R of 0.4 in 10 cities over east China. The simulated period-mean SOA concentrations of 4–15 μg m⁻³ were mainly distributed over the North China Plain (NCP), the middle and lower reaches of the Yangtze River and Chongqing district. SOA dominated organic aerosol (OA) over China in summertime (90%). The percentage contributions to SOA from ASOA (SOA produced from anthropogenic volatile organic compounds (AVOC)), BSOA (SOA produced from biogenic volatile organic compounds (BVOC)), DSOA (SOA produced from aqueous uptake of glyoxal and methylglyoxal) and S/I-SOA (SOA produced from semi-volatile and intermediate volatile organic compounds) were estimated to be 48.3%, 28.6%, 14.3%, and 8.8% respectively, over east China in summertime. In terms of domain and period average, ASOA contributed most to SOA (59%) in north China, while BSOA contributed most to SOA (37.3%) in northeast China. The percentage contribution of DSOA to SOA reached 21.5% in southwest China. S/I-SOA accounted for approximately 10% of SOA in most areas of east China. This study reveals that while AVOC dominates SOA formation on average over east China, the SOA source contributions differ considerably in different regions of China. BVOC makes the same contribution to SOA formation as AVOC in northeast China and southwest China, where forest coverage and BVOC emission are higher and anthropogenic emissions are relatively low, highlighting the significant role of BVOC in summer SOA formation in China.
Afficher plus [+] Moins [-]Occurrence and distribution of Carbapenem-resistant Enterobacterales and carbapenemase genes along a highly polluted hydrographic basin
2022
Teixeira, Pedro | Tacão, Marta | Henriques, Isabel
We determined the distribution and temporal variation of Carbapenem Resistant Enterobacterales (CRE), carbapenemase-encoding genes and other antibiotic resistance genes (ARGs) in a highly polluted river (Lis River; Portugal), also assessing the potential influence of water quality to this distribution. Water samples were collected in two sampling campaigns performed one year apart (2018/2019) from fifteen sites and water quality was analyzed. CRE were isolated and characterized. The abundance of four ARGs (blaNDM, blaKPC, tetA, blaCTX₋M), two Microbial Source Tracking (MST) indicators (HF183 and Pig-2-Bac) and the class 1 integrase gene (IntI1) was measured by qPCR. confirmed the poor quality of the Lis River water, particularly in sites near pig farms. A collection of 23 CRE was obtained: Klebsiella (n = 19), Enterobacter (n = 2) and Raoultella (n = 2). PFGE analysis revealed a clonal relationship between isolates obtained in different sampling years and sites. All CRE isolates exhibited multidrug resistance profiles. Klebsiella and Raoultella isolates carried blaKPC while Enterobacter harbored blaNDM. Conjugation experiments were successful for only four Klebsiella isolates. All ARGs were detected by qPCR on both sampling campaigns. An increase in ARGs and IntI1 abundances was detected in sites located downstream of wastewater treatment plants. Strong correlations were observed between blaCTX₋M, IntI1 and the human-pollution marker HF183, and also between tetA and the pig-pollution marker Pig-2-bac, suggesting that both human- and animal-derived pollution in the Lis River are a potential source of ARGs. Plus, water quality parameters related to eutrophication and land use were significantly correlated with ARGs abundances. Our findings demonstrated that the Lis River encloses high levels of antibiotic resistant bacteria and ARGs, including CRE and carbapenemase-encoding genes. Overall, this study provides a better understanding on the impacts of water pollution resulting from human and animal activities on the resistome of natural aquatic systems.
Afficher plus [+] Moins [-]Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights
2022
Zhang, Lin | Ji, Xiaoli | Ding, Fan | Wu, Xuan | Tang, Ning | Wu, Qing
The association between polycyclic aromatic hydrocarbons (PAHs) and male reproductive dysfunction has attracted increasing attention. The purpose of this study was to compare the male reproductive toxicity of multiple PAHs and to investigate the underlying molecular mechanisms. TM4 cells (mouse testicular Sertoli cells, SCs) were treated with benzo(a)pyrene (BaP), pyrene (Py), fluoranthene (Fl) and phenanthrene (Phe) (0, 0.1, 1, 10, 50, or 100 μM) for varying time points (4, 12, 24, or 48 h), and male C57BL/6 mice were administered BaP and Py (0, 10, 50, or 100 mg/kg body weight) for 14 days based on the cell experimental results. Histopathological examination, western blotting, ELISA, biochemical assays, RT–PCR, flow cytometry, JC-1 staining and trans-epithelium electrical resistance (TEER) measurements were used to assess apoptosis, blood-testis barrier (BTB) integrity, intracellular calcium ([Ca²⁺]ᵢ) concentrations and oxidative stress (OS). The results revealed that the mRNA levels and enzymatic activities of CYP450 and GST family members; levels of ROS, MDA, cleaved caspase 3 (c-caspase 3), caspase 9, Bax, and cytochrome C (CytC); and numbers of TUNEL-positive cells were significantly increased by BaP and Py, while levels of AhR, GSH, SOD, CAT, Bcl-2 and ΔΨm were decreased. Additionally, BaP and Py notably interfered with tight junctions (TJs) and adherens junctions (AJs) in the BTB. Intriguingly, BaP, but not Py, induced [Ca²⁺]ᵢ overload and gap junction (GJ) destruction. There was no dramatic effect of Fl and/or Phe on any of the above parameters except that slight cytotoxicity was observed with higher doses of Fl. Collectively, these findings showed that BaP and Py elicited SC apoptosis and BTB disruption involving mitochondrial dysfunction and OS, but [Ca²⁺]ᵢ fluctuation and GJ injury were only observed with BaP-induced reproductive toxicity. The male reproductive toxicity of the selected PAHs was ranked in the order of BaP > Py > Fl > Phe.
Afficher plus [+] Moins [-]The status of marine debris/litter and plastic pollution in the Caribbean Large Marine Ecosystem (CLME): 1980–2020
2022
Kanhai, La Daana K. | Asmath, Hamish | Gobin, Judith F.
Plastic pollution is one of several anthropogenic stressors putting pressure on ecosystems of the Caribbean Large Marine Ecosystem (CLME). A ‘Clean Ocean’ is one of the ambitious goals of the United Nations (UN) Decade of Ocean Science for Sustainable Development. If this is to be realized, it is imperative to build upon the work of the previous decades (1980–2020). The objectives of the present study were to assess the state of knowledge about: (i) the distribution, quantification, sources, transport and fate of marine debris/litter and microplastics in the coastal/marine environment of the CLME and, (ii) the effects of plastics on biodiversity. Snapshots, i.e., peer-reviewed studies and multi-year (1991–2020) marine debris data from International Coastal Cleanup (ICC) events, indicated that plastic debris was a persistent issue in multiple ecosystems and environmental compartments of the CLME. Collectively, a suite of approaches (debris categorization, remote sensing, particle tracking) indicated that plastic debris originated from a combination of land and marine-based sources, with the former more significant than the latter. Rivers were identified as an important means of transporting mismanaged land-based waste to the marine environment. Oceanic currents were important to the transport of plastic debris into, within and out of the region. Plastic debris posed a threat to the biodiversity of the CLME, with specific biological, physical, ecological and chemical effects being identified. Existing data can be used to inform interventions to mitigate the leakage of plastic waste to the marine environment. Given the persistent and transboundary nature of the issue, further elucidation of the problem, its causes and effects must be prioritized, while simultaneously harmonizing regional and international approaches.
Afficher plus [+] Moins [-]Spatiotemporal distribution and environmental control factors of halocarbons in the Yangtze River Estuary and its adjacent marine area during autumn and spring
2022
Zou, Yawen | He, Zhen | Liu, Chunying | Yang, Gui-Peng
The oceanic production and release of volatile halocarbons (VHCs) to the atmosphere play a vital role in regulating the global climate. In this study, seasonal and spatial variations in VHCs, including trichlorofluoromethane (CFC-11), methyl iodide (CH₃I), dibromomethane (CH₂Br₂), and bromoform (CHBr₃), and environmental parameters affecting their concentrations were characterized in the atmosphere and seawater of the Yangtze River Estuary and its adjacent marine area during two cruises from October 17 to October 26, 2019 and from May 12 to May 25, 2020. Significant seasonal variations were observed in the atmosphere and seawater because of seasonal differences in the prevalent monsoon, water mass (Yangtze River Diluted Water), and biogenic production. VHCs concentrations were positively correlated with Chl-a concentrations in the surface water during autumn. The average sea-to-air fluxes of CH₃I, CH₂Br₂, and CHBr₃ in autumn were 19.7, 4.0, and 7.6 nmol m⁻² d⁻¹, respectively, while those in spring were 6.3, 6.4, and −3.6 nmol m⁻² d⁻¹. In the ship-based incubation experiments, ocean acidification and dust deposition had no significant effects on VHCs concentrations. The concentrations of CH₂Br₂ and CHBr₃ were significantly positively correlated with phytoplankton biomass under lower pH condition (M3: pH 7.9). This result indicated that CH₂Br₂ and CHBr₃ concentrations were mainly related to the biological release.
Afficher plus [+] Moins [-]Occupational lead exposure on genome-wide DNA methylation and DNA damage
2022
Meng, Yu | Zhou, Mengyu | Wang, Tuanwei | Zhang, Guanghui | Tu, Yuting | Gong, Shiyang | Zhang, Yunxia | Christiani, David C. | Au, William | Liu, Yun | Xia, Zhao-lin
Lead (Pb) exposure can induce DNA damage and alter DNA methylation but their inter-relationships have not been adequately determined. Our overall aims were to explore such relationships and to evaluate underlying epigenetic mechanisms of Pb-induced genotoxicity in Chinese workers. Blood Pb levels (BLLs) were determined and used as individual's Pb-exposure dose and the Comet assay (i.e., % tail DNA) was conducted to evaluate DNA damage. In the screening assay, 850 K BeadChip sequencing was performed on peripheral blood from 10 controls (BLLs ≤100 μg/L) and 20 exposed workers (i.e., 10 DNA-damaged and 10 DNA-undamaged workers). Using the technique, differentially methylated positions (DMPs) between the controls and the exposed workers were identified. In addition, DMPs were identified between the DNA-undamaged and DNA-damaged workers (% tail DNA >2.14%). In our validation assay, methylation levels of four candidate genes were measured by pyrosequencing in an independent sample set (n = 305), including RRAGC (Ras related GTP binding C), USP1 (Ubiquitin specific protease 1), COPS7B (COP9 signalosome subunit 7 B) and CHEK1 (Checkpoint kinase 1). The result of comparisons between the controls and the Pb-exposed workers show that DMPs were significantly enriched in genes related to nerve conduction and cell cycle. Between DNA-damaged group and DNA-undamaged group, differentially methylated genes were enriched in the pathways related to cell cycle and DNA integrity checkpoints. Additionally, methylation levels of RRAGC and USP1 were negatively associated with BLLs (P < 0.05), and the former mediated 19.40% of the effect of Pb on the % tail DNA. These findings collectively indicated that Pb-induced DNA damage was closely related to methylation of genes in cell cycle regulation, and methylation levels of RRAGC were involved in Pb-induced genotoxicity.
Afficher plus [+] Moins [-]The use of image analysis techniques for the study of muscle melanisation in sand flathead (Platycephalus bassensis)
2022
Ooi, Chun Kit | Lewis, Trevor | Nowak, Barbara | Lyle, Jeremy | Haddy, James
Muscle melanisation in sand flathead is visible as black spots in the normally white flesh of fish. It is widespread in Tasmania, including at the Tamar Estuary, with increasing frequency of reporting by recreational fishers. The phenomenon is more prevalent in areas impacted by heavy metal pollution and has been linked to heavy metal accumulation. In this study, image processing software ImageJ was employed to study the phenomenon and to establish an objective rating system. A longitudinal profile plot was used to study the greying of the fillet. The degree of melanisation was rated based on the percentage surface area melanised on the surface and in transverse sections of fillets. A muscle melanisation scoring system for sand flathead was established based on visual interpretation using the macroscopic melanisation scoring criteria: melanisation scores 0 = <0.5%, 1 = 0.5–5%, 2 = 5–20%, and 3 = >20% (% = melanised surface area in proportion to the whole fillet). A refined image analysis technique was developed to quantify the percentage of melanised muscle surface area and the muscle melanisation scoring system was statistically validated. Sand flathead fillet with higher melanisation score was shown to be linked to increased intensity of greyness and greater numbers and size of black spots on the surface of fillets and within the flesh. The greying and black spots were primarily concentrated at the anterior region of fillet and around the dorsal vertebrae zone on transverse section of fillets. Overall, findings from this study established the use of image analysis techniques to validate visual inspection and to give a standardised and objective method to determine the degree of melanisation in sand flathead. As muscle melanisation appears to be linked to heavy metal pollution, the standardised scoring system would facilitate future research for environmental pollution and monitoring purposes.
Afficher plus [+] Moins [-]Warming, temperature fluctuations and thermal evolution change the effects of microplastics at an environmentally relevant concentration
2022
Chang, Mengjie | Zhang, Chao | Li, Mingyang | Dong, Junyu | Li, Changchao | Liu, Jian | Verheyen, Julie | Stoks, Robby
Microplastics are sometimes considered not harmful at environmentally relevant concentrations. Yet, such studies were conducted under standard thermal conditions and thereby ignored the impacts of higher mean temperatures (MT), and especially daily temperature fluctuations (DTF) under global warming. Moreover, an evolutionary perspective may further benefit the future risk assessment of microplastics under global warming. Here, we investigated the effects of two generations of exposure to an environmentally relevant concentration of polystyrene microplastics (5 μg L⁻¹) under six thermal conditions (2 MT × 3 DTF) on the life history, physiology, and behaviour of Daphnia magna. To assess the impact of thermal evolution we thereby compared Daphnia populations from high and low latitudes. At the standard ecotoxic thermal conditions (constant 20 °C) microplastics almost had no effect except for a slight reduction of the heartbeat rate. Yet, at the challenging thermal conditions (higher MT and/or DTF), microplastics affected each tested variable and caused an earlier maturation, a higher fecundity and intrinsic growth rate, a decreased heartbeat rate, and an increased swimming speed. These effects may be partly explained by hormesis and/or an adaptive response to stress in Daphnia. Moreover, exposure to microplastics at the higher mean temperature increased the fecundity and intrinsic growth rate of cold-adapted high-latitude Daphnia, but not of the warm-adapted low-latitude Daphnia, suggesting that thermal evolution in high-latitude Daphnia may buffer the effects of microplastics under future warming. Our results highlight the critical importance of DTF and thermal evolution for a more realistic risk assessment of microplastics under global warming.
Afficher plus [+] Moins [-]A theory-guided graph networks based PM2.5 forecasting method
2022
Zhou, Hongye | Zhang, Feng | Du, Zhenhong | Liu, Renyi
The theory-guided air quality model solves the mathematical equations of chemical and physical processes in pollution transportation numerically. While the data-driven model, as another scientific research paradigm with powerful extraction of complex high-level abstractions, has shown unique advantages in the PM₂.₅ prediction applications. In this paper, to combine the two advantages of strong interpretability and feature extraction capability, we integrated the partial differential equation of PM₂.₅ dispersion with deep learning methods based on the newly proposed DPGN model. We extended its ability to perform long-term multi-step prediction and used advection and diffusion effects as additional constraints for graph neural network training. We used hourly PM₂.₅ monitoring data to verify the validity of the proposed model, and the experimental results showed that our model achieved higher prediction accuracy than the baseline models. Besides, our model significantly improved the correct prediction rate of pollution exceedance days. Finally, we used the GNNExplainer model to explore the subgraph structure that is most relevant to the prediction to interpret the results. We found that the hybrid model is more biased in selecting stations with Granger causality when predicting.
Afficher plus [+] Moins [-]