Affiner votre recherche
Résultats 221-230 de 7,288
Metabolic, cellular and defense responses to single and co-exposure to carbamazepine and methylmercury in Dreissena polymorpha Texte intégral
2022
Baratange, Clément | Paris-Palacios, Séverine | Bonnard, Isabelle | Delahaut, Laurence | Dominique, Grandjean | Wortham, Laurence | Sayen, Stéphanie | Gallorini, Andrea | Michel, Jean | Renault, D | Breider, Florian | Loizeau, Jean-Luc | Cosio, Claudia
International audience | Carbamazepine (CBZ) and Hg are widespread and persistent micropollutants in aquatic environments. Both pollutants are known to trigger similar toxicity mechanisms, e.g. reactive oxygen species (ROS) production. Here, their effects were assessed in the zebra mussel Dreissena polymorpha, frequently used as a freshwater model in ecotoxicology and biomonitoring. Single and co-exposures to CBZ (3.9 µg•L-1) and MeHg (280 ng•L-1) were performed for 1 and 7 days. Metabolomics analyses evidenced that the co-exposure was the most disturbing after 7 days, reducing the amount of 25 metabolites involved in protein synthesis, energy metabolism, antioxidant response and osmoregulation, and significantly altering cells and organelles' structure supporting a reduction of functions of gills and digestive glands. CBZ alone after 7 days decreased the amount of α-aminobutyric acid and had a moderate effect on the structure of mitochondria in digestive glands. MeHg alone had no effect on mussels' metabolome, but caused a significant alteration of cells and organelles' structure in gills and digestive glands. Single exposures and the co-exposure increased antioxidant responses vs control in gills and digestive glands, without resulting in lipid peroxidation, suggesting an increased ROS production caused by both pollutants. Data globally supported that a higher number of hyperactive cells compensated cellular alterations in the digestive gland of mussels exposed to CBZ or MeHg alone, while CBZ+MeHg co-exposure overwhelmed this compensation after 7 days. Those effects were unpredictable based on cellular responses to CBZ and MeHg alone, highlighting the need to consider molecular toxicity pathways for a better anticipation of effects of pollutants in biota in complex environmental conditions.
Afficher plus [+] Moins [-]Even low light pollution levels affect the spatial distribution and timing of activity of a “light tolerant” bat species Texte intégral
2022
Mariton, Léa | Kerbiriou, Christian | Bas, Yves | Zanda, Brigitte | Le Viol, Isabelle
International audience | By disrupting nocturnal landscapes worldwide, light pollution caused by Artificial Light At Night (ALAN) is recognized as a major threat to biodiversity. As even low light intensities might affect some taxa, concerns are arising about biological responses to widespread low light levels. We used data from a French citizen science bat monitoring program (1894 full-nights monitored on 1055 sites) to explore the landscape-scale effects of light on an open-space-foraging bat species, the Serotine bat (Eptesicus serotinus). We assessed this species' abundance and timing of night-time activity (median time of activity) at foraging sites. ALAN, and to a lesser extent moonlight, reduced E. serotinus abundance. ALAN delayed activity, and this delay was amplified during overcast nights. On the contrary, where there was no ALAN, the higher the cloud cover, the earlier the activity occurred. Cloud cover likely darkened the night sky in rural locations, whereas it amplified skyglow in light-polluted places, increasing ALAN effects on bats. Interestingly, moonlight also delayed activity but this effect was weakened where there was ALAN. Our study shows that even fine variations of light levels could affect the spatiotemporal distribution of a common species usually considered to be “light tolerant”, with potential cascading effects on individual fitness and population dynamics. It stresses how urgent it is to preserve and restore dark areas to protect biodiversity from light pollution while working on light intensity and directivity where ALAN is needed.
Afficher plus [+] Moins [-]Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging Texte intégral
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier
Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging Texte intégral
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier
International audience | Mercury (Hg) is a toxic trace element widely distributed in the environment, which particularly accumulates in top predators, including seabirds. Among seabirds, large gulls (Larus sp) are generalist feeders, foraging in both terrestrial and marine habitats, making them relevant bioindicators of local coastal Hg contamination. In the present study, we reported blood Hg concentrations in adults and chicks of four different gull species breeding on the French Atlantic coast: the European herring gull (Larus argentatus), the Lesser black-backed gull (L. fuscus), the Great black-backed gull (L. marinus) and the Yellow-legged gull (L. michahellis). We also investigated the potential role of foraging ecology in shaping Hg contamination across species, using the unique combination of three dietary tracers (carbon, nitrogen and sulfur stable isotopes) and biologging (GPS tracking). A high concentration of Hg was associated with high trophic position and a marine diet in gulls, which was corroborated by birds’ space use strategy during foraging trips. Adults of all four species reached Hg concentrations above reported toxicity thresholds. Specifically, adults of Great black-backed gulls had a high trophic marine specialized diet and significantly higher Hg concentrations than the three other species. Blood Hg was 4–7 times higher in adults than in chicks, although chicks of all species received mainly marine and high trophic position prey, which is expected to be the cause of blood Hg concentrations of toxic concern. By using both stable isotopes and GPS tracking, the present study provides compelling insights on the main feeding habits driving Hg contamination in a seabird assemblage feeding in complex coastal environments.
Afficher plus [+] Moins [-]Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging Texte intégral
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie M. | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier
Mercury (Hg) is a toxic trace element widely distributed in the environment, which particularly accumulates in top predators, including seabirds. Among seabirds, large gulls (Larus sp) are generalist feeders, foraging in both terrestrial and marine habitats, making them relevant bioindicators of local coastal Hg contamination. In the present study, we reported blood Hg concentrations in adults and chicks of four different gull species breeding on the French Atlantic coast: the European herring gull (Larus argentatus), the Lesser black-backed gull (L. fuscus), the Great black-backed gull (L. marinus) and the Yellow-legged gull (L. michahellis). We also investigated the potential role of foraging ecology in shaping Hg contamination across species, using the unique combination of three dietary tracers (carbon, nitrogen and sulfur stable isotopes) and biologging (GPS tracking). A high concentration of Hg was associated with high trophic position and a marine diet in gulls, which was corroborated by birds’ space use strategy during foraging trips. Adults of all four species reached Hg concentrations above reported toxicity thresholds. Specifically, adults of Great black-backed gulls had a high trophic marine specialized diet and significantly higher Hg concentrations than the three other species. Blood Hg was 4–7 times higher in adults than in chicks, although chicks of all species received mainly marine and high trophic position prey, which is expected to be the cause of blood Hg concentrations of toxic concern. By using both stable isotopes and GPS tracking, the present study provides compelling insights on the main feeding habits driving Hg contamination in a seabird assemblage feeding in complex coastal environments.
Afficher plus [+] Moins [-]Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging Texte intégral
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Physiologie moléculaire et adaptation (PhyMA) ; Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS) | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | College of Environmental Science and Engineering ; School of Ocean Sciences | Ligue pour la Protection des Oiseaux (LPO) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Institut universitaire de France (IUF) ; Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
International audience | Mercury (Hg) is a toxic trace element widely distributed in the environment, which particularly accumulates in top predators, including seabirds. Among seabirds, large gulls (Larus sp) are generalist feeders, foraging in both terrestrial and marine habitats, making them relevant bioindicators of local coastal Hg contamination. In the present study, we reported blood Hg concentrations in adults and chicks of four different gull species breeding on the French Atlantic coast: the European herring gull (Larus argentatus), the Lesser black-backed gull (L. fuscus), the Great black-backed gull (L. marinus) and the Yellow-legged gull (L. michahellis). We also investigated the potential role of foraging ecology in shaping Hg contamination across species, using the unique combination of three dietary tracers (carbon, nitrogen and sulfur stable isotopes) and biologging (GPS tracking). A high concentration of Hg was associated with high trophic position and a marine diet in gulls, which was corroborated by birds’ space use strategy during foraging trips. Adults of all four species reached Hg concentrations above reported toxicity thresholds. Specifically, adults of Great black-backed gulls had a high trophic marine specialized diet and significantly higher Hg concentrations than the three other species. Blood Hg was 4–7 times higher in adults than in chicks, although chicks of all species received mainly marine and high trophic position prey, which is expected to be the cause of blood Hg concentrations of toxic concern. By using both stable isotopes and GPS tracking, the present study provides compelling insights on the main feeding habits driving Hg contamination in a seabird assemblage feeding in complex coastal environments.
Afficher plus [+] Moins [-]Dissolved and particulate iron redox speciation during the LOHAFEX fertilization experiment Texte intégral
2022
Laglera, Luis M | Uskaikar, Hema | Klaas, Christine | Naqvi, S Wajih A | Wolf-Gladrow, Dieter A | Tovar-Sánchez, Antonio
The redox speciation of iron was determined during the iron fertilization LOHAFEX and for the first time, the chemiluminescence assay of filtered and unfiltered samples was systematically compared. We hypothesize that higher chemiluminescence in unfiltered samples was caused by Fe(II) adsorbed onto biological particles. Dissolved and particulate Fe(II) increased in the mixed layer steadily 6-fold during the first two weeks and decreased back to initial levels by the end of LOHAFEX. Both Fe(II) forms did not show diel cycles downplaying the role of photoreduction. The chemiluminescence of unfiltered samples across the patch boundaries showed strong gradients, correlated significantly to biomass and the photosynthetic efficiency and were higher at night, indicative of a biological control. At 150 m deep, a secondary maximum of dissolved Fe(II) was associated with maxima of nitrite and ammonium despite high oxygen concentrations. We hypothesize that during LOHAFEX, iron redox speciation was mostly regulated by trophic interactions.
Afficher plus [+] Moins [-]Investigation of microplastic pollution in Arctic fjord water: a case study of Rijpfjorden, Northern Svalbard Texte intégral
2022
Bao, Mengrong | Huang, Qinghui | Lu, Zhibo | Collard, France | Cai, Minggang | Huang, Peng | Yu, Yong | Cheng, Shuiping | An, Lihui | Wold, Anette | Gabrielsen, Geir Wing
Investigation of microplastic pollution in Arctic fjord water: a case study of Rijpfjorden, Northern Svalbard Texte intégral
2022
Bao, Mengrong | Huang, Qinghui | Lu, Zhibo | Collard, France | Cai, Minggang | Huang, Peng | Yu, Yong | Cheng, Shuiping | An, Lihui | Wold, Anette | Gabrielsen, Geir Wing
peer reviewed | Microplastic contamination is an emerging issue in the marine environment including the Arctic. However, the occurrence of microplastics in the Arctic fjords remains less understood. Sample collections were conducted by trawling horizontally in surface water (0-0.4-m depth) and trawling vertically in the water column (0-200-m depth) to investigate the abundance, composition, and distribution of microplastics in the Rijpfjorden, Northern Svalbard, in the summer of 2017. Laser Direct Infrared chemical imaging technique was applied for the counting and identification of microplastic particles. A total of 1010 microplastic particles and 14 mesoplastics were identified from 41,038 particles in eight samples from the Rijpfjorden. The abundance of microplastics larger than 300 µm was 0.15 ± 0.19 n/m3 in surface water, and 0.15 ± 0.03 n/m3 in the water column of the Rijpfjorden. The microplastic particles identified in Rijpfjorden water consisted of 10 types of polymers. The dominant microplastics are polyurethane, polyethylene, polyvinyl acetate, polystyrene, polypropylene, and alkyd varnish. Historical ship activities and newly melted sea ice might be major sources of microplastics in the seawater of Rijpfjorden. In general, contamination of microplastics larger than 300 µm in Rijpfjorden water is at a low level in comparison to other polar waters. Further research is needed to confirm the origin and fate of microplastics below 300 µm in Arctic fjords.
Afficher plus [+] Moins [-]Investigation of microplastic pollution in Arctic fjord water: a case study of Rijpfjorden, Northern Svalbard Texte intégral
2022
Bao, Mengrong | Huang, Qinghui | Lu, Zhibo | Collard, France | Cai, Minggang | Huang, Peng | Yu, Yong | Cheng, Shuiping | An, Lihui | Wold, Anette | Gabrielsen, Geir Wing
Microplastic contamination is an emerging issue in the marine environment including the Arctic. However, the occurrence of microplastics in the Arctic fjords remains less understood. Sample collections were conducted by trawling horizontally in surface water (0–0.4-m depth) and trawling vertically in the water column (0–200-m depth) to investigate the abundance, composition, and distribution of microplastics in the Rijpfjorden, Northern Svalbard, in the summer of 2017. Laser Direct Infrared chemical imaging technique was applied for the counting and identification of microplastic particles. A total of 1010 microplastic particles and 14 mesoplastics were identified from 41,038 particles in eight samples from the Rijpfjorden. The abundance of microplastics larger than 300 µm was 0.15 ± 0.19 n/m³ in surface water, and 0.15 ± 0.03 n/m³ in the water column of the Rijpfjorden. The microplastic particles identified in Rijpfjorden water consisted of 10 types of polymers. The dominant microplastics are polyurethane, polyethylene, polyvinyl acetate, polystyrene, polypropylene, and alkyd varnish. Historical ship activities and newly melted sea ice might be major sources of microplastics in the seawater of Rijpfjorden. In general, contamination of microplastics larger than 300 µm in Rijpfjorden water is at a low level in comparison to other polar waters. Further research is needed to confirm the origin and fate of microplastics below 300 µm in Arctic fjords.
Afficher plus [+] Moins [-]Investigation of microplastic pollution in Arctic fjord water: a case study of Rijpfjorden, Northern Svalbard Texte intégral
2022
Bao, Mengrong | Huang, Qinghui | Lu, Zhibo | Collard, France | Cai, Minggang | Huang, Peng | Yu, Yong | Cheng, Shuiping | An, Lihui | Wold, Anette | Gabrielsen, Geir Wing
peer reviewed | Microplastic contamination is an emerging issue in the marine environment including the Arctic. However, the occurrence of microplastics in the Arctic fjords remains less understood. Sample collections were conducted by trawling horizontally in surface water (0-0.4-m depth) and trawling vertically in the water column (0-200-m depth) to investigate the abundance, composition, and distribution of microplastics in the Rijpfjorden, Northern Svalbard, in the summer of 2017. Laser Direct Infrared chemical imaging technique was applied for the counting and identification of microplastic particles. A total of 1010 microplastic particles and 14 mesoplastics were identified from 41,038 particles in eight samples from the Rijpfjorden. The abundance of microplastics larger than 300 µm was 0.15 ± 0.19 n/m3 in surface water, and 0.15 ± 0.03 n/m3 in the water column of the Rijpfjorden. The microplastic particles identified in Rijpfjorden water consisted of 10 types of polymers. The dominant microplastics are polyurethane, polyethylene, polyvinyl acetate, polystyrene, polypropylene, and alkyd varnish. Historical ship activities and newly melted sea ice might be major sources of microplastics in the seawater of Rijpfjorden. In general, contamination of microplastics larger than 300 µm in Rijpfjorden water is at a low level in comparison to other polar waters. Further research is needed to confirm the origin and fate of microplastics below 300 µm in Arctic fjords.
Afficher plus [+] Moins [-]Analysis of changes in air pollution quality and impact of COVID-19 on environmental health in Iran: application of interpolation models and spatial autocorrelation. Texte intégral
2022
Keshtkar, Mostafa | Heidari, Hamed | Moazzeni, Niloofar | Azadi, Hossein
peer reviewed | In the global COVID-19 epidemic, humans are faced with a new challenge. The concept of quarantine as a preventive measure has changed human activities in all aspects of life. This challenge has led to changes in the environment as well. The air quality index is one of the immediate concrete parameters. In this study, the actual potential of quarantine effects on the air quality index and related variables in Tehran, the capital of Iran, is assessed, where, first, the data on the pollutant reference concentration for all measuring stations in Tehran, from February 19 to April 19, from 2017 to 2020, are monitored and evaluated. This study investigated the hourly concentrations of six particulate matters (PM), including PM2.5, PM10, and air contaminants such as nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO). Changes in pollution rate during the study period can be due to reduced urban traffic, small industrial activities, and dust mites of urban and industrial origins. Although pollution has declined in most regions during the COVID-19 quarantine period, the PM2.5 rate has not decreased significantly, which might be of natural origins such as dust. Next, the air quality index for the stations is calculated, and then, the interpolation is made by evaluating the root mean square (RMS) of different models. The local and global Moran index indicates that the changes and the air quality index in the study area are clustered and have a high spatial autocorrelation. The results indicate that although the bad air quality is reduced due to quarantine, major changes are needed in urban management to provide favorable conditions. Contaminants can play a role in transmitting COVID-19 as a carrier of the virus. It is suggested that due to the rise in COVID-19 and temperature in Iran, in future studies, the effect of increased temperature on COVID-19 can be assessed.
Afficher plus [+] Moins [-]Impact of environmental micropollutants and diet composition on the gut microbiota of wild european eels (Anguilla anguilla) Texte intégral
2022
Bertucci, Anthony | Hoede, Claire | Dassié, Emilie | Gourves, Pierre-Yves | Suin, Amandine | Le Menach, Karine | Budzinski, Hélène | Daverat, Françoise | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRAE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Plateforme Bio-Informatique - Génotoul ; Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRAE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-IR BioInfOmics ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Génome et Transcriptome - Plateforme Génomique (GeT-PlaGe) ; Plateforme Génome & Transcriptome (GET) ; Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-10-LABX-0045,COTE,COntinental To coastal Ecosystems: evolution, adaptability and governance(2010)
Impact of environmental micropollutants and diet composition on the gut microbiota of wild european eels (Anguilla anguilla) Texte intégral
2022
Bertucci, Anthony | Hoede, Claire | Dassié, Emilie | Gourves, Pierre-Yves | Suin, Amandine | Le Menach, Karine | Budzinski, Hélène | Daverat, Françoise | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRAE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Plateforme Bio-Informatique - Génotoul ; Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRAE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-IR BioInfOmics ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Génome et Transcriptome - Plateforme Génomique (GeT-PlaGe) ; Plateforme Génome & Transcriptome (GET) ; Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-10-LABX-0045,COTE,COntinental To coastal Ecosystems: evolution, adaptability and governance(2010)
International audience | In fish, the gut microbiome plays a crucial role in homeostasis and health and is affected by several organic and inorganic environmental contaminants. Amphidromous fish are sentinel species, particularly exposed to these stressors. We used whole metagenome sequencing to characterize the gut microbiome of wild European eels (Anguilla anguilla) at a juvenile stage captured from three sites with contrasted pollution levels in term of heavy metals and persistent organic pollutants. The objectives were to identify what parameters could alter the gut microbiome of this catadromous fish and to explore the potential use of microbiota as bioindicators of environment quality. We identified a total of 1079 microbial genera. Overall, gut microbiome was dominated by Proteobacteria, Firmicutes and Actinobacteria. Alpha and beta diversity were different amongst sites and could be explained by a reduced number of environmental and biological factors, specifically the relative abundance of fish preys in eels’ diet, PCB101, γHCH (lindane), transnonachlor and arsenic. Furthermore, we identified a series of indicator taxa with differential abundance between the three sites. Changes in the microbial communities in the gut caused by environmental pollutants were previously undocumented in European eels. Our results indicate that microbiota might represent another route by which pollutants affect the health of these aquatic sentinel organisms.
Afficher plus [+] Moins [-]Impact of environmental micropollutants and diet composition on the gut microbiota of wild european eels (Anguilla anguilla) Texte intégral
2022
Bertucci, Anthony | Hoede, Claire | Dassié, Emilie | Gourves, Pierre-Yves | Suin, Amandine | Le Menach, Karine | Budzinski, Hélène | Daverat, Françoise
In fish, the gut microbiome plays a crucial role in homeostasis and health and is affected by several organic and inorganic environmental contaminants. Amphidromous fish are sentinel species, particularly exposed to these stressors. We used whole metagenome sequencing to characterize the gut microbiome of wild European eels (Anguilla anguilla) at a juvenile stage captured from three sites with contrasted pollution levels in term of heavy metals and persistent organic pollutants. The objectives were to identify what parameters could alter the gut microbiome of this catadromous fish and to explore the potential use of microbiota as bioindicators of environment quality. We identified a total of 1079 microbial genera. Overall, gut microbiome was dominated by Proteobacteria, Firmicutes and Actinobacteria. Alpha and beta diversity were different amongst sites and could be explained by a reduced number of environmental and biological factors, specifically the relative abundance of fish preys in eels’ diet, PCB101, γHCH (lindane), transnonachlor and arsenic. Furthermore, we identified a series of indicator taxa with differential abundance between the three sites. Changes in the microbial communities in the gut caused by environmental pollutants were previously undocumented in European eels. Our results indicate that microbiota might represent another route by which pollutants affect the health of these aquatic sentinel organisms.
Afficher plus [+] Moins [-]Impact of environmental micropollutants and diet composition on the gut microbiota of wild european eels (Anguilla anguilla) Texte intégral
2022
Bertucci, Anthony | Hoede, Claire | Dassié, Emilie | Gourves, Pierre-yves | Suin, Amandine | Le Menach, Karine | Budzinski, Hélène | Daverat, Françoise
In fish, the gut microbiome plays a crucial role in homeostasis and health and is affected by several organic and inorganic environmental contaminants. Amphidromous fish are sentinel species, particularly exposed to these stressors. We used whole metagenome sequencing to characterize the gut microbiome of wild European eels (Anguilla anguilla) at a juvenile stage captured from three sites with contrasted pollution levels in term of heavy metals and persistent organic pollutants. The objectives were to identify what parameters could alter the gut microbiome of this catadromous fish and to explore the potential use of microbiota as bioindicators of environment quality. We identified a total of 1079 microbial genera. Overall, gut microbiome was dominated by Proteobacteria, Firmicutes and Actinobacteria. Alpha and beta diversity were different amongst sites and could be explained by a reduced number of environmental and biological factors, specifically the relative abundance of fish preys in eels’ diet, PCB101, γHCH (lindane), transnonachlor and arsenic. Furthermore, we identified a series of indicator taxa with differential abundance between the three sites. Changes in the microbial communities in the gut caused by environmental pollutants were previously undocumented in European eels. Our results indicate that microbiota might represent another route by which pollutants affect the health of these aquatic sentinel organisms.
Afficher plus [+] Moins [-]Evaluation of temperature corrections for pesticide half-lives in tropical and temperate soils Texte intégral
2022
Campan, Pauline | Samouëlian, Anatja | Voltz, Marc | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | This work was funded by the Guadeloupe region and the European Regional Development Fund (FEDER) (grant 410–00160),and the senior author was awarded a doctoral scholarship by the Institut Agro Montpellier.
International audience | Temperature is a key factor that influences pesticide degradation. Extrapolating degradation half-lives (DT50) measured at a given temperature to different temperatures remains challenging, especially for tropical conditions with high temperatures. In this study, the use of the standard Arrhenius equation for correcting temperature effects on pesticide degradation in soils was evaluated and its performance was compared with that of alternative Arrhenius-based equations. To do so, a database of 509 DT50 values measured between 5 and 35 °C for 32 pesticides on tropical and temperate soils was compiled for the first time through an extensive literature search. The temperature correction models were fitted to the database using linear mixed regression approaches that included soil type and compound effects. No difference in the temperature dependence of DT50 between tropical and temperate soils was detected, regardless of the model. A comparison of the prediction performances of the models showed that constant activation energy (Ea) cannot be considered valid for the whole range of temperatures. The classical Arrhenius equation with an Ea of 65.4 kJ.mol−1, as recommended by the European Food Safety Authority (EFSA), was shown to be valid for correcting the DT50 only for temperatures ranging from 5 to 20 °C. However, for temperatures greater than 20 °C, which are common in tropical environments, the median Ea was significantly lower at 10.3 kJ.mol−1. These findings suggest the need to adapt the standard temperature correction of the European pesticide risk assessment temperature procedure when it is applied in tropical settings
Afficher plus [+] Moins [-]Ultrasound-assisted QuEChERS-based extraction using EDTA for determination of currently-used pesticides at trace levels in soil Authors Texte intégral
2022
Lafay, Florent | Daniele, Gaëlle | Fieu, Maëva | Pelosi, Céline | Fritsch, Clémentine | Vulliet, Emmanuelle | ISA-TRACES - Technologie et Recherche en Analyse Chimique pour l'Environnement et la Santé ; Institut des Sciences Analytiques (ISA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
International audience | It is essential to monitor pesticides in soils as their presence at trace levels and their bioavailability can induce adverse effects on soil's ecosystems, animals, and human health. In this study, we developed an analytical method for the quantification of traces of multi-class pesticides in soil using liquid chromatography-tandem mass spectrometry. In this way, 31 pesticides were selected, including 12 herbicides, 9 insecticides, and 10 fungicides. Two extraction techniques were first evaluated namely: the pressurized liquid extraction and the QuEChERS procedure. The latest one was finally selected and optimized, allowing extraction recoveries of 55 to 118 %. The addition of the chelating agent EDTA, which binds preferentially to soil cations that complex some pesticides, facilitates their extraction. Coupled with liquid chromatography-tandem mass spectrometry, the procedure displayed very high sensitivity, with limits of quantification (LOQ) in the range 0.01-5.5 ng/g. A good linearity (R² >0.992) was observed over two orders of magnitude (LOQ-100×LOQ) with good accuracy (80%-120 %) for all compounds except the two pyrethroids lambda-cyhalothrin and tau-fluvalinate (accuracy comprised between 50 and 175%) and the cyclohexanedione cycloxydim (accuracy<35%). Good repeatability and reproducibility were also achieved. The method was finally successfully applied to 12 soil samples collected from 3 land-use types. Among the 31-targeted pesticides, 24 were detected at least once, with concentration levels varying from LOQ to 722 ng/g. Many values were below 0.5 ng/g, indicating that the developed method could provide new knowledge on the extremely low residual contents of some pesticides.
Afficher plus [+] Moins [-]