Affiner votre recherche
Résultats 2271-2280 de 62,084
Occurrence of anthropogenic and naturally-produced organohalogenated compounds in tissues of Black Sea harbour porpoises
2010
Weijs, Liesbeth | Das, Krishna | Neels, Hugo | Blust, Ronny | Covaci, Adrian
peer reviewed | Harbour porpoises are one of the three cetacean species inhabiting the Black Sea. This is the first study to report on polybrominated diphenyl ethers (PBDEs) and naturally-produced compounds, methoxylated PBDEs (MeO-PBDEs) and polybrominated hexahydroxanthene derivatives (PBHDs), in tissues (kidney, brain, blubber, liver, muscle) of male harbour porpoises (11 adults, 9 juveniles) from the Black Sea. Lipid-normalized concentrations decreased from muscle > blubber > liver > kidney > brain for the sum of polychlorinated biphenyls (PCBs) and for the sum of PBDEs. Among the naturally-produced compounds, levels of PBHDs were higher than of MeO-PBDEs, with tri-BHD and 6-MeO-BDE 47 being the dominant compounds for both groups, respectively. Concentrations of naturally-produced compounds decreased from blubber to brain, similarly to the sum of DDT and metabolites (DDXs). Concentrations of DDXs were highest, followed by PCBs, HCB, PBHDs, PBDEs and MeO-PBDEs. Levels of PCBs and PBDEs in blubber were lower than concentrations reported for harbour porpoises from the North Sea, while concentrations of DDXs were higher.
Afficher plus [+] Moins [-]Biomarker responses in mussel (Mytilus edulis) and flounder (Platichthys flesus) in the Klaipeda-Butinge area (Baltic Sea).
2006
Barsiene, J. | Lehtonen, K. K. | Köhler, Angela | Broeg, Katja | Vuorinen, P. J. | Lang, T. | Pempkowiak, J. | Balk, L. | Syvokiene, J. | Dedonyte, V. | Rybakovas, A. | Repecka, R. | Vuontisjärvi, H. | Kopecka, J.
Biomarker responses and indication of contaminant effects in blue mussel (Mytilus edulis) and eelpout (Zoarces viviparus) from the western Baltic Sea.
2006
Schiedeck, D. | Broeg, Katja | Barsiene, J. | Lehtonen, K. K. | Gercken, J. | Pfeifer, S. | Vuontisjärvi, H. | Vuorinen, P. J. | Köhler, Angela | Balk, L. | Schneider, Robert
Can a pollution event be detected using a single biological effects monitoring method?
2001
von Westernhagen, Hein | Dethlefsen, V. | Haarich, M.
Heavy metals, organochlorines and polycyclic aromatic hydrocarbons in sperm whales stranded in Southern North sea during the 1994/1995 winter,
1999
Hoolsbeek, L. | Joiris, C. R. | Debacker, Virginie | Rosse, P. | Nellissen, J. P. | Gobert, Sylvie | Bouquegneau, Jean-Marie | Bossicart, M.
peer reviewed
Afficher plus [+] Moins [-]Etude des effets du dioxyde de soufre sur les vegetaux
1972
de Cormis, L. | Bonte, J. | Cantuel, J. | Dubreuil, J.
Quantitative assessment of sediment delivery and retention in four watersheds in the Godavari River Basin, India, using InVEST model — an aquatic ecosystem services perspective
2022
Kantharajan, Ganesan | Govindakrishnan, Panamanna Mahadevan | Singh, Rajeev K. | Estrada-Carmona, Natalia | Jones, Sarah K. | Singh, Achal | Mohindra, Vindhya | Kumar, Nallur Kothanda Raman Krishna | Rana, Jai C. | Jena, Joy Krushna | Lal, Kuldeep Kumar
Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France)
2017
Vernier F. | Leccia-Phelpin O. | Lescot J.M. | Minette S. | Miralles A. | Barberis D. | Scordia C. | Kuentz-Simonet V. | Tonneau J.P.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economi
Afficher plus [+] Moins [-]Phthalate and alkylphenol removal within wastewater treatment plants using physicochemical lamellar clarification and biofiltration
2012
Bergé, Alexandre | Gasperi, Johnny | Rocher, Vincent | Coursimault, Annie | Moilleron, Régis | Laboratoire Eau, Environnement et Systèmes Urbains (LEESU) ; AgroParisTech-Université Paris-Est Marne-la-Vallée (UPEM)-École nationale des ponts et chaussées (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | SIAAP - Direction du Développement et de la Prospective ; Syndicat interdépartemental pour l'assainissement de l'agglomération parisienne (SIAAP) | laboratoire central de la préfecture de police ; Laboratoire Central de la Préfecture de Police
International audience | Endocrine disrupting compounds (EDCs) have been found in surface waters worldwide. They are known for exerting adverse effects on animals of many species, including humans. EDCs comprise compounds of anthropogenic origin. They can enter waterways via either discharges from wastewater treatment plant (WWTPs), combined sewer overflows (CSO) or atmospheric deposition. In this work, the fate and removal of four phthalates and two alkylphenols: Diethyl phthalate (DEP), Di-n-Butyl phthalate (DnBP), Butyl Benzyl phthalate (BBP), Di-(2-ethylhexyl) phthalate (DEHP), nonylphenol (NP) and octylphenol (OP) were investigated within a wastewater treatment plant (WWTP) using lamellar clarification and biofiltration. This plant receives about 240,000 m 3 d -1 of wastewater. The whole treatment process comprises: screening, grit removal, primary sedimentation using coagulant and flocculant, followed by biofiltration units. Phthalates and alkylphenols were monitored at three locations, including raw sewage, before primary treatment, decanted effluents, before biological treatment, and final effluents, just before discharge to receiving waters. Nine campaigns were performed in 2011 during different seasons. In raw wastewater, DEHP was the major compound (32.42 to 71.88, median 42.95 μg.l -1), followed by DEP (7.00 to 36.03, median 21.00 μg.l -1) and NP (4.08 to 10.63, median 5.95 μg.l -1). Other compounds averaged few μg.l -1. During the WWTP treatment, DEP becomes major contaminant (0.46 to 6.77, median 2.95 μg.l -1), followed by DEHP (0.95 to 6.43, median 2.30 μg.l -1) and NP (0.31 to 1.36, median 0.63 μg.l -1). Contaminant removal depends on the physicochemical characteristics of the compounds. For example, for lamellar clarification, removal efficiency was found to be strongly dependent to log Kow and, hence, to be highly correlated with their sorption coefficient (Kd). As a consequence, compounds with high log Kow (>3) were removed to a significant extent. DEHP was highly removed by lamellar clarification (68.8%), followed by BBP (61.5%) and NP (51.0%). Besides, DEP (log Kow < 3) was slightly removed (13.8%). During biofiltration, both hydrophilic and hydrophobic compounds were equally eliminated. Therefore, DEP (87.3%), OP (88.0%) and DEHP (81.9%) were mostly removed during biological treatment. © 201 WIT Press.
Afficher plus [+] Moins [-]Watershed-scale assessment of oil palm cultivation impact on water quality and nutrient fluxes: A case study in Sumatra (Indonesia)
2015
Comte I. | Colin F. | Grünberger O. | Whalen J. | Widodo R.H. | Caliman J.P.
High fertilizer input is necessary to sustain high yields in oil palm agroecosystems, but it may endanger neighboring aquatic ecosystems when excess nutrients are transported to waterways. In this study, the hydrochemical dynamics of groundwater and streams under baseflow conditions were evaluated with bi-monthly measurements for 1 year on 16 watersheds. Hydrochemical measurements were related to the spatial distribution of soil and fertilization practices across a landscape of 100 km2, dominated by oil palm cultivation, in Central Sumatra, Indonesia. The low nutrient concentrations recorded in streams throughout the landscape indicated that the mature oil palm plantations in this study did not contribute to eutrophication of aquatic ecosystems. This was ascribed to high nutrient uptake by oil palm, a rational fertilizer program, and dilution of nutrient concentrations due to heavy rainfall in the study area. Soil type controlled dissolved inorganic N and total P fluxes, with greater losses of N and P from loamy-sand uplands than loamy lowlands. Organic fertilization helped to reduce nutrient fluxes compared to mineral fertilizers. However, when K inputs exceeded the oil palm requirement threshold, high K export occurred during periods when groundwater had a short residence time. For higher nutrient use efficiency in the long term, the field-scale fertilizer management should be complemented with a landscape-scale strategy of fertilizer applications that accounts for soil variability. (Résumé d'auteur)
Afficher plus [+] Moins [-]