Affiner votre recherche
Résultats 231-240 de 4,042
Trematomus bernacchii as an indicator of POP temporal trend in the Antarctic seawaters Texte intégral
2016
Cincinelli, Alessandra | Martellini, Tania | Pozo, Karla | Kukučka, Petr | Audy, Ondřej | Corsolini, Simonetta
The occurrence of POPs in remote areas, such as Antarctica, is the result of their ability to udergo Long Range Transport (LRT) in the atmosphere, precipitation and cold condensation.In this study, both recent levels of various POPs in Trematomus bernacchii and their changes in roughly three decades were determined in order to evaluate trends of POPs in Antarctic benthic seawaters. In fact, Trematomus bernacchii is considered a good sentinel bio-indicator for monitoring not only the extent of contamination by POPs in the Antarctic aquatic ecosystem, but also changes in Antarctic ecosystem quality and trends.A slight decreasing PCB trend was detected during 30-years time span (from early 1980's to 2010) in the circumantarctic seawaters. Two higher peaks of concentrations were reported in 2001 and 2005 in the Ross Sea and they may reflect the ice melting of icebergs.Because fire risk is very high in Antarctica due to the very dry air, a large use of flame retardants in buildings and furniture of stations is highly probable; moreover, many stations were built when there were no restrictions on flame retardants use. The PBDE levels in the T. bernacchii from 2001 to 2011 ranged 0.05–0.35 pg/g and were of the same order of magnitude in 2001/2011 and in 2002/2005, with a maximum value in 2005 (0.35 pg/g).Comparable concentrations of HCB, HCHs PCDDs and PCDFs are available only for few seasons: all these compounds showed a decreasing temporal trends and their concentrations were one or more order of magnitude lower in 2000s–2010s.
Afficher plus [+] Moins [-]Warming increases nutrient mobilization and gaseous nitrogen removal from sediments across cascade reservoirs Texte intégral
2016
Zhou, Xingpeng | Chen, Nengwang | Yan, Zhihao | Duan, Shuiwang
Increases in water temperature, as a result of climate change, may influence biogeochemical cycles, sediment-water fluxes and consequently environmental sustainability. Effects of rising temperature on dynamics of nitrate, nitrite, ammonium, dissolved inorganic nitrogen (DIN), dissolved reactive phosphorus (DRP), dissolved organic carbon (DOC) and gaseous nitrogen (N2 and N2O) were examined in a subtropical river (the Jiulong River, southeast China) by microcosm experiments. Slurry sediments and overlying water were collected from three continuous cascade reservoirs, and laboratory incubations were performed at four temperature gradients (5 °C, 15 °C, 25 °C and 35 °C). Results indicated: (1) warming considerably increased sediment ammonium, DIN and DOC fluxes to overlying water; (2) warming increased retention of nitrate, and to a lesser extent, nitrite, corresponding to increases in N2 and N2O emission; (3) DRP was retained but released from Fe/Al-P enriched sediments at high temperature (35 °C) due to enhanced coupled transformation of carbon and nitrogen with oxygen deficiency. Using relationships between sediment fluxes and temperature, a projected 2.3°C-warming in future would increase ammonium flux from sediment by 7.0%–16.8%, while increasing nitrate flux into sediment by 8.9%–28.6%. Moreover, substrates (e.g., grain size, carbon availability) influenced nutrient delivery and cycling across cascade reservoirs. This study highlights that warming would increase bioreactive nutrient (i.e., ammonium and phosphate) mobilization with limited gaseous N removal from sediments, consequently deteriorating water quality and increasing eutrophication with future climate change.
Afficher plus [+] Moins [-]The role of PVP in the bioavailability of Ag from the PVP-stabilized Ag nanoparticle suspension Texte intégral
2016
Romih, Tea | Jemec, Anita | Kos, Monika | Hočevar, Samo B. | Kralj, Slavko | Makovec, Darko | Drobne, Damjana
We assessed the bioavailability of Ag from Ag nanoparticles (NPs), stabilized with polyvinylpyrrolidone (PVP), to terrestrial isopods which were exposed to 10, 100 and 1000 μg Ag NPs/g of dry food. Different Ag species were determined in the NP suspension that was fed to isopods: (i) total Ag by atomic absorption spectroscopy, (ii) the sum of Ag-PVP complexes and free Ag+ by anodic stripping voltammetry at the bismuth-film electrode, and (iii) free Ag+ by ion-selective potentiometry. The amounts of Ag species in the consumed food were compared to the masses of Ag accumulated in the isopod digestive glands. Our results show that all three Ag species (Ag NPs, Ag-PVP complexes and free Ag+) could be the source of bioaccumulated Ag, but to various degrees depending on the exposure concentration and transformations in the digestive system. We provide a proof that (i) Ag NPs dissolve and Ag-PVP complexes dissociate in the isopod digestive tract; (ii) the concentration of free Ag+ in the suspension offered to the test organisms is not the only measure of bioavailable Ag. The type of NP stabilizer along with the NP transformations in the digestive system needs to be considered in the creation of new computational models of the nanomaterial fate.
Afficher plus [+] Moins [-]Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment Texte intégral
2016
Nödler, Karsten | Tsakiri, Maria | Aloupi, Maria | Gatidou, Georgia | Stasinakis, Athanasios S. | Licha, Tobias
Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L⁻¹ and 6.1/522 ng L⁻¹, respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two sampling locations irgarol 1051 exceeded its annual average EQS value but not the maximum allowable concentration of 16 ng L⁻¹.
Afficher plus [+] Moins [-]Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities Texte intégral
2016
Madaniyazi, Lina | Guo, Yuming | Chen, Renjie | Kan, Haidong | Tong, Shilu
Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM10) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM10-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM10-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM10 concentration and green space per capita could best explain the heterogeneity in PM10-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well.
Afficher plus [+] Moins [-]Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: A study based on myocardial toxicity Texte intégral
2016
Zhang, Yingying | Ji, Xiaotong | Ku, Tingting | Li, Guangke | Sang, Nan
Substantial epidemiological evidence has consistently reported that fine particulate matter (PM2.5) is associated with an increased risk of cardiovascular outcomes. PM2.5 is a complex mixture of extremely small particles and liquid droplets composed of multiple components, and there has been high interest in identifying the specific health-relevant physical and/or chemical toxic constituents of PM2.5. In the present study, we analyzed 8 heavy metals (Cr, Ni, Cu, Cd, Pb, Zn, Mn and Co) in the PM2.5 collected during four different seasons in Taiyuan, a typical coal-burning city in northern China. Our results indicated that total concentrations of the 8 heavy metals differed among the seasons. Zn and Pb, which are primarily derived from the anthropogenic source, coal burning, were the dominant elements, and high concentrations of these two elements were observed during the spring and winter. To clarify whether these heavy metals in the locally collected PM2.5 were associated with health effects, we conducted health risk assessments using validated methods. Interestingly, Pb was responsible for greater potential health risks to children. Because cardiovascular disease (CVD) is a main contributor to the mortality associated with PM2.5 exposure, we performed experimental assays to evaluate the myocardial toxicity. Our in vitro experiments showed that the heavy metal-containing PM2.5 induced season-dependent apoptosis in rat H9C2 cells through a reactive oxygen species (ROS)-mediated inflammatory response. Our findings suggested that heavy metals bound to PM2.5 produced by coal burning play an important role in myocardial toxicity and contribute to season-dependent health risks.
Afficher plus [+] Moins [-]Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu2+, Cd2+ and Hg2+) on maize seed germination under high temperature Texte intégral
2016
Deng, Benliang | Yang, Kejun | Zhang, Yifei | Li, Zuotong
Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu2+, Cd2+ and Hg2+) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not.
Afficher plus [+] Moins [-]MiR-34a, a promising novel biomarker for benzene toxicity, is involved in cell apoptosis triggered by 1,4-benzoquinone through targeting Bcl-2 Texte intégral
2016
Chen, Yujiao | Sun, Pengling | Guo, Xiaoli | Gao, Ai
Exposure to benzene is inevitable, and concerns regarding the adverse health effects of benzene have been raised. Most investigators found that benzene exposure induced hematotoxicity. In this regard, Our study aimed to explore a novel potential biomarker of adverse health effects following benzene exposure and the toxic mechanisms of benzene metabolites in vitro. This study consisted of 314 benzene-exposed workers and 288 control workers, an air benzene concentration of who were 2.64 ± 1.60 mg/m3 and 0.05 ± 0.01 mg/m3, respectively. In this population-based study, miR-34a expression was elevated in benzene-exposed workers. The correlation of miR-34a with the airborne benzene concentration, S-phenylmercapturic acid (S-PMA) and trans, trans-muconic acid (t, t-MA), all of which reflect benzene exposure, was found. Correlation analysis indicated that miR-34a was associated with peripheral blood count, alanine transaminase (ALT) and oxidative stress. Furthermore, multivariate analysis demonstrated that miR-34a expression was strongly associated with white blood cell count (structure loadings = 0.952). In population-based study, miR-34a had the largest contribution to altered peripheral blood counts, which reflect benzene-induced hematotoxicity. The role of miR-34a in benzene toxicity was assessed using lentiviral vector transfection. Results revealed that 1,4-benzoquinone induced abnormal cell apoptosis and simultaneously upregulated miR-34a accompanied with decreased Bcl-2. Finally, inhibition of miR-34a elevated Bcl-2 and decreased 1,4-benzoquinone-induced apoptosis. In conclusion, miR-34a was observed to be involved in benzene-induced hematotoxicity by targeting Bcl-2 and could be regarded as a potential novel biomarker for benzene toxicity.
Afficher plus [+] Moins [-]Dissimilatory nitrate reduction processes in sediments of urban river networks: Spatiotemporal variations and environmental implications Texte intégral
2016
Cheng, Lv | Li, Xiaofei | Lin, Xianbiao | Hou, Lijun | Liu, Min | Li, Ye | Liu, Sai | Hu, Xiaoting
Urbanizations have increased the loadings of reactive nitrogen in urban riverine environments. However, limited information about dissimilatory nitrate reduction processes and associated contributions to nitrogen removal is available for urban riverine environments. In this study, sediment slurry experiments were conducted with nitrogen isotope-tracing technique to investigate the potential rates of denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) and their contributions to nitrate reduction in sediments of urban river networks, Shanghai. The potential rates of denitrification, anammox and DNRA measured in the study area ranged from 0.193 to 98.7 nmol N g−1 h−1 dry weight (dw), 0.0387–23.7 nmol N g−1 h−1 dw and 0–10.3 nmol N g−1 h−1 dw, respectively. Denitrification and DNRA rates were higher in summer than in winter, while anammox rates were greater in winter than in summer for most sites. Dissolved oxygen, total organic carbon, nitrate, ammonium, sulfide, Fe(II) and Fe(III) were found to have significant influence on these nitrate reduction processes. Denitrification contributed 11.5–99.5%% to total nitrate reduction, as compared to 0.343–81.6% for anammox and 0–52.3% for DNRA. It is estimated that nitrogen loss of approximately 1.33 × 105 t N year−1 was linked to both denitrification and anammox processes, which accounted for about 20.1% of total inorganic nitrogen transported annually into the urban river networks of Shanghai. Overall, these results show the potential importance of denitrification and anammox in nitrogen removal and provide new insight into the mechanisms of nitrogen cycles in urban riverine environments.
Afficher plus [+] Moins [-]Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China Texte intégral
2016
Sun, Qiyao | Sheng, Yanqing | Yang, Jian | Di Bonito, Marcello | Mortimer, Robert J.G.
The cycling of sulfur (S), iron (Fe) and phosphorus (P) in sediments and pore water can impact the water quality of overlying water. In a heavily polluted river estuary (Yantai, China), vertical profiles of fluxes of dissolved sulfide, Fe2+ and dissolved reactive phosphorus (DRP) in sediment pore water were investigated by the Diffusive Gradients in Thin films technique (DGT). Vertical fluxes of S, Fe, P in intertidal sediment showed the availability of DRP increased while the sulfide decreased with depth in surface sediment, indicating that sulfide accumulation could enhance P release in anoxic sediment. In sites with contrasting salinity, the relative dominance of iron and sulfate reduction was different, with iron reduction dominant over sulfate reduction in the upper sediment at an intertidal site but the reverse true in a freshwater site, with the other process dominating at depth in each case. Phosphate release was largely controlled by iron reduction.
Afficher plus [+] Moins [-]