Affiner votre recherche
Résultats 2311-2320 de 4,935
Presence of Pesticides and Toxicity Assessment of Agricultural Soils in the Quintana Roo Mayan Zone, Mexico Using Biomarkers in Earthworms (Eisenia fetida) Texte intégral
2019
Andrade-Herrera, Moises | Escalona-Segura, Griselda | González-Jáuregui, Mauricio | Reyna-Hurtado, Rafael A. | Vargas-Contreras, Jorge A. | Rendón-von Osten, Jaime
Agriculture intensification and the use of pesticides have led to biodiversity loss due to soil toxic compounds. Thus, soil contamination studies are important to understand the negative effects in the physicochemical interactions. The use of biomarkers through bioindicators is a useful tool for assessing toxicity in agricultural environments complemented with the determination of pesticides. The objectives of this study were to determine the presence of organochlorine (OCPs) and organophosphate (OPPs) pesticides and the soil’s potential toxicity in agricultural fields with different crops from the center of Quintana Roo State, using a set of enzymatic biomarkers (BMs), such as acetylcholinesterase (AChE), glutathione-S-Transferase (GST), and catalase (CAT) on earthworms (Eisenia fetida). Earthworms were exposed for 96 h on nine different agricultural soils as well as on a reference soil from a conservation area. Within all samples of soils, only OCPs were detected in low concentrations (ranged from non-detected to 1.40 ppm). However, no correlation was observed between these pesticides and the BMs activity. AChE and CAT activity was significantly inhibited in at least one agricultural soil if compared to the conservation area, while no significant differences of GST were observed. The AChE activity observed suggests the presence of anticholinergic substances (that were neither detected nor determined analytically) in the sampled soils. The characterization of oxidative stress BMs was not correlated with the OCPs analyzed. Our results demonstrate that further studies of toxicity under field conditions are required, given the complexity of environmental conditions outside the laboratory.
Afficher plus [+] Moins [-]Assessing the role of different dissolved organic carbon and bromide concentrations for disinfection by-product formation using chemical analysis and bioanalysis Texte intégral
2019
Neale, Peta A. | Leusch, Frederic D. L.
Concerns regarding disinfection by-product (DBP) formation during drinking water treatment have led water utilities to apply treatment processes to reduce the concentration of DBP precursor natural organic matter (NOM). However, these processes often do not remove bromide, leading to high bromide to dissolved organic carbon (DOC) ratios after treatment, which can increase the formation of more toxic brominated DBPs. In the current study, we investigated the formation and effect of DBPs in a matrix of synthetic water samples containing different concentrations of bromide and DOC after disinfection with chlorine. Trihalomethanes and haloacetic acids were analysed by chemical analysis, while effect was evaluated using in vitro bioassays indicative of the oxidative stress response and bacterial toxicity. While the addition of increasing bromide concentrations did not alter the sum molar concentration of DBPs formed, the speciation changed, with greater bromine incorporation with an increasing Br:DOC ratio. However, the observed effect did not correlate with the Br:DOC ratio, but instead, effect increased with increasing DOC concentration. Water samples with low DOC and high bromide did not exceed the available oxidative stress response effect-based trigger value (EBT), while all samples with high DOC, irrespective of the bromide concentration, exceeded the EBT. This suggests that treatment processes that remove NOM can improve drinking water quality, even if they are unable to remove bromide. Further, iceberg modelling showed that detected DBPs only explained a small fraction of the oxidative stress response, supporting the application of both chemical analysis and bioanalysis for monitoring DBP formation.
Afficher plus [+] Moins [-]iTRAQ quantitatively proteomic analysis of the hippocampus in a rat model of accumulative microwave-induced cognitive impairment Texte intégral
2019
Wang, Hui | Tan, Shengzhi | Dong, Ji | Zhang, Jing | Yao, Binwei | Xu, Xinping | Hao, Yanhui | Yu, Chao | Zhou, Hongmei | Zhao, Li | Peng, Ruiyun
Central nervous system is sensitive and vulnerable to microwave radiation. Numerous studies have reported that microwave could damage cognitive functions, such as impairment of learning and memory ability. However, the biological effects and mechanisms of accumulative microwave radiation on cognitive functions were remained unexplored. In this study, we analyzed differential expressed proteins in rat models of microwave-induced cognitive impairment by iTRAQ high-resolution proteomic method. Rats were exposed to 2.856 GHz microwave (S band), followed by 1.5 GHz microwave exposure (L band) both at an average power density of 10 mW/cm² (SL10 group). Sham-exposed (control group), 2.856 GHz microwave-exposed (S10 group), or 1.5 GHz microwave-exposed (L10 group) rats were used as controls. Hippocampus was isolated, and total proteins were extracted at 7 days after exposure, for screening differential expressed proteins. We found that accumulative microwave exposure induced 391 differential expressed proteins, including 9 downregulated and 382 upregulated proteins. The results of GO analysis suggested that the biological processes of these proteins were related to the adhesion, translation, brain development, learning and memory, neurogenesis, and so on. The cellular components mainly focused on the extracellular exosome, membrane, and mitochondria. The molecular function contained the protein complex binding, protein binding, and ubiquitin-protein transferase activity. And, the KEGG pathways mainly included the synaptic vesicle cycle, long-term potentiation, long-term depression, glutamatergic synapse, and calcium signaling pathways. Importantly, accumulative exposure (SL10 group) caused more differential expressed proteins than single exposure (S10 group or L10 group). In conclusion, 10 mW/cm² S or L band microwave induced numerous differential expressed proteins in the hippocampus, while accumulative exposure evoked strongest responses. These proteins were closely associated with cognitive functions and were sensitive to microwave.
Afficher plus [+] Moins [-]Nocturnal noise and habitat homogeneity limit species richness of owls in an urban environment Texte intégral
2019
Fröhlich, Arkadiusz | Ciach, M. (Michał)
Nocturnal noise and habitat homogeneity limit species richness of owls in an urban environment Texte intégral
2019
Fröhlich, Arkadiusz | Ciach, M. (Michał)
Habitat loss and fragmentation are listed among the most significant effects of urbanization, which is regarded as an important threat to wildlife. Owls are the top predators in most terrestrial habitats, and their presence is a reliable indicator of ecosystem quality and complexity. However, influence of urbanization on owl communities, anthropogenic noise in particular, has not been investigated so far. The aim of this study was to identify the role of noise and landcover heterogeneity in the species richness of owl assemblage in the urban ecosystem. Owls were surveyed in the city of Kraków (southern Poland) on 65 randomly selected sample plots (1 km²). The area of main landcover types, landcover diversity index, mean size of landcover patch, and nocturnal noise level were defined within the sample plots and correlated with owl species richness. Five owl species were recorded in the study area with forests as the dominant landcover type for Tawny and Ural owls, grasslands for Long-eared and Barn owls, and gardens for Little owls. In total, 52% of sample plots were occupied by at least one species (1–3 species per plot). The number of owl species was positively correlated with landcover diversity index and negatively correlated with nocturnal noise emission. This study demonstrates that species richness of owls in urban areas may be shaped by landcover heterogeneity and limited by noise intensity. This indicates that noise changes top predator assemblage, which in consequence may disturb predator-prey interactions within human-transformed habitats.
Afficher plus [+] Moins [-]Nocturnal noise and habitat homogeneity limit species richness of owls in an urban environment Texte intégral
Arkadiusz Fröhlich | Michał Ciach
Habitat loss and fragmentation are listed among the most significant effects of urbanization, which is regarded as an importantthreat to wildlife. Owls are the top predators in most terrestrial habitats, and their presence is a reliable indicator of ecosystemquality and complexity. However, influence of urbanization on owl communities, anthropogenic noise in particular, has not beeninvestigated so far. The aim of this study was to identify the role of noise and landcover heterogeneity in the species richness ofowl assemblage in the urban ecosystem. Owls were surveyed in the city of Kraków (southern Poland) on 65 randomly selectedsample plots (1 km2). The area of main landcover types, landcover diversity index, mean size of landcover patch, and nocturnalnoise level were defined within the sample plots and correlated with owl species richness. Five owl species were recorded in thestudy area with forests as the dominant landcover type for Tawny and Ural owls, grasslands for Long-eared and Barn owls, andgardens for Little owls. In total, 52% of sample plots were occupied by at least one species (1–3 species per plot). The number ofowl species was positively correlated with landcover diversity index and negatively correlated with nocturnal noise emission.This study demonstrates that species richness of owls in urban areas may be shaped by landcover heterogeneity and limited bynoise intensity. This indicates that noise changes top predator assemblage, which in consequence may disturb predator-preyinteractions within human-transformed habitats. | Urban ecology, Acoustic predators, Traffic noise, Habitat diversity, Habitat homogenization, Strigiformes | 100 | 17284-17291 | 17
Afficher plus [+] Moins [-]Cellular Responses of Chlorococcum Sp. Algae Exposed to Zinc Oxide Nanoparticles by Using Flow Cytometry Texte intégral
2019
Evaluation of 50 nm zinc oxide nanoparticles’ (ZnO-NPs) effects on the microalgae Chlorococcum sp. growing in high salt growth medium (HSM) was investigated by using flow cytometry parameters (cell size (FSC), granularity (SSC), chlorophyll a fluorescence (FL3), and formation of reactive oxygen species (ROS)). Algal cells in exponential growth were exposed to 0–100 mg/L of ZnO-NPs and their physiological responses were measured after 24 and 96 h of treatment. Behavior of ZnO-NPs was analyzed in HSM and results indicated that ZnO-NPs formed agglomeration with a large distribution. Total soluble Zn concentration increased when initial ZnO-NP concentration increased. Significant negative effect on algal cells was observed after 96 h exposition and at high ZnO-NP concentration. This negative impact was evaluated by the significant increase in ROS production, inhibition in the photosynthetic electron transport, and reduction in cell growth. In this study, using flow cytometry multi-parameters might help to prevent and evaluate inhibitory effect of oxide nanoparticles on aquatic photosynthetic microorganisms.
Afficher plus [+] Moins [-]Evaluation of Three Soil Blends to Improve Ornamental Plant Performance and Maintain Engineering Metrics in Bioremediating Rain Gardens Texte intégral
2019
This research project explores the performance of soils intended to support ornamental plants serving an ecological benefit within bioremediating rain gardens. Three plots of identical plantings were installed in autumn of 2015 into three different planting media in Northeast Ohio, USA. A control soil blend was tested against two experimental soil blends in the field under natural conditions for 3 years to explore any potential differences in overall plant performance. The control planting soil was created following current Ohio Department of Natural Resources specifications for rain garden planting soils which consist of no less than 80% sand and no more than 10% clay by volume. Test soil blends incorporated lightweight expanded shale to combat the potential negative effects of high sand soils for plants (i.e., high matric potential) while maintaining required engineering benefits (i.e., fast infiltration rate coupled with good physical, chemical, and biological filtration). Our analysis suggests that incorporating expanded shales into bioremediating gardens as a replacement to high sand content can maintain all engineering specifications and may increase survival rates of plant life beyond rates currently found in high sand content rain gardens. Survival rate for plants in the control plot was at 48.3% while experimental plots one and two were 96.5% and 75.8% respectively. The research team suggests that these increased survival rates could contribute to more widespread adoption and implementation of stormwater management practices, especially small-scale, interconnected rain gardens in the urban environment as designated by low-impact development standards.
Afficher plus [+] Moins [-]Re-estimating the interconnectedness between the demand of energy consumption, income, and sustainability indices Texte intégral
2019
In this study, we analyze the time-varying causality linkages between energy consumption, economic growth, and environmental degradation in 33 Organization for Economic Co-operation and Development countries, spanning the period 2000 to 2013. The curve causality approach provides evidence of a significant environmental Kuznets curve in 25 countries in the case of the ecological footprint and in 23 countries in the case of the Environmental Performance Index. However, out of them, only Italy, Slovakia, and South Korea have traditional environmental Kuznets curve, in the form of an inverted U–shaped curve. For the remaining countries, different forms of curves are valid. In particular, an N-shaped curve appears to be valid between income and environmental degradation for nearly half of the sample, i.e., for Austria, Belgium, Chile, Estonia, Finland, France, Germany, Hungary, Luxembourg, Netherlands, Sweden, Switzerland, New Zealand, Turkey, and the USA. Additionally, bidirectional causality relationships are confirmed among all covariates in most countries. In view of the results, some crucial policy implications would be suggested, such as sustainable development that aims to make a balance between economic growth and environmental protection.
Afficher plus [+] Moins [-]Mercury adsorption to aged biochar and its management in China Texte intégral
2019
Biochar is frequently applied for the reduction of mercury (Hg) migration in soil; however, most of the studies only focused on the adsorption capacity evaluation of fresh biochar. We investigated the Hg adsorption capacities of biochar prepared from wheat straw, corn straw, and sunflower seed shells. Biochar aging was simulated via natural aging, high-temperature aging, and freeze-thaw aging. The adsorption capacities of all the aged biochar were increased, and wheat straw biochar and seed shells biochar treated with high-temperature aging (wBC-Ha500 and sBC-Ha600) and corn straw biochar treated with freeze-thaw aging (cBC-Fta500) showed an observable improvement on the equilibrium adsorption amounts. The kinetics of the fresh biochar samples fitted the pseudo-first-order kinetic model and the pseudo-second-order kinetic model, while the kinetics of the aged biochar samples fitted the pseudo-second-order kinetic model. Biochar adsorption capacity increased with higher initial concentrations and increasing temperatures. Elemental analysis, Fourier-transform infrared spectroscopy (FT-IR) spectra, cation-exchange capacity (CEC), surface area (SA), zeta potential, and X-ray photoelectron spectroscopy (XPS) showed that the aging mechanism consisted of hydroxylation and carboxylation caused by the functional groups on the biochar surface. According to the different climatic zones in China, wheat straw biochar and seed shell biochar are suitable for the tropical zone and the subtropical zone, while corn straw biochar is more suitable for the cold and the mid-temperate zones.
Afficher plus [+] Moins [-]Use of tree rings as a bioindicator to observe atmospheric heavy metal deposition Texte intégral
2019
Trees can be used as good indicators to evaluate the increase in atmospheric heavy metal concentrations. In the last two decades, air pollution in the city of Ankara has rapidly increased with the ever-increasing traffic density. In the present study, the depositions of aluminum (Al), zinc (Zn), copper (Cu), cobalt (Co), iron (Fe), manganese (Mn), chrome (Cr), cadmium (Cd), sodium (Na), calcium (Ca), barium (Ba), phosphor (P), magnesium (Mg), arsenic (As), and boron (B) in the rings of oak trees were analyzed using a GBC Integra XL–SDS-270 ICP-OES device. The study found that heavy metal concentrations in tree rings varied over the past 20 years; furthermore, there was a significant relationship between the heavy metal concentrations in tree rings and the atmospheric heavy metal concentrations. There was an increase in the concentrations of nutritional elements (Na, P, and Mg) in 2010 when there was excessive precipitation. As a result, the concentrations of all elements in the woods of different ages were significantly different at a confidence interval of 95% for As, 99% for Cd, and 99.9% for other elements.
Afficher plus [+] Moins [-]Access to Natural Substrates in Urban Streams Does Not Counter Impoverishment of Macroinvertebrate Communities: a Comparison of Engineered and Non-engineered Reaches Texte intégral
2019
Reid, D. J. | Tippler, C.
Urban streams are degraded through multiple mechanisms, including severely altered flow regimes, elevated concentrations of waterborne contaminants, removal of riparian vegetation and the loss of a mosaic of heterogeneous aquatic habitats. Engineering of urban stream reaches using concrete is a widespread and extreme case of deliberate alteration of flow regimes and concomitant habitat simplification. To assess the effect of such engineering practices on stream ecosystems, we compared aquatic macroinvertebrate communities from concrete-lined engineered urban reaches, non-engineered urban reaches with natural substrates and reference reaches flowing through minimally disturbed forested subcatchments and with natural substrates, in the Sydney metropolitan region, Australia. The communities from all urban reaches were impoverished and distinctly different from more diverse communities in forested reference reaches. Despite low aquatic habitat heterogeneity, engineered urban reaches had very high abundances of Diptera and some other tolerant taxa. Diptera and/or Gastropoda were dominant in non-engineered urban reaches. Multivariate community structures were dissimilar between the urban reaches and forested reference reaches and between non-engineered and engineered urban reaches. However, the low family-level richness and SIGNAL scores in both urban reach types indicated they were severely ecological impaired, whether engineered or not. Most macroinvertebrate taxa in the regional pool that were hardy enough to inhabit urban reaches with natural substrates were also present in nearby concreted reaches. The results add weight to the growing evidence that in urban landscapes, regional-scale changes in water quality and flow regimes limit the establishment of diverse macroinvertebrate communities, which cannot be addressed through the provision of increased reach-scale habitat heterogeneity.
Afficher plus [+] Moins [-]