Affiner votre recherche
Résultats 241-250 de 4,935
Stable-isotopic analysis and high-throughput pyrosequencing reveal the coupling process and bacteria in microaerobic and hypoxic methane oxidation coupled to denitrification Texte intégral
2019
Cao, Qin | Liu, Xiaofeng | Li, Na | Xie, Zhijie | Li, Zhidong | Li, Dong
Microaerobic and hypoxic methane oxidation coupled to denitrification (MAME-D and HYME-D) occur in stabilized landfills with leachate recirculation when biological denitrification is limited by lack of organics. To evaluate nitrate denitrification efficiency and culture MAME-D/HYME-D involved bacteria, a leach bed bioreactor semi-continuous experiment was conducted for 60 days in 5 runs, under nitrate concentrations ranging of 20 mg/L–55 mg/L, wherein 5% sterile leachate was added during runs 4 and 5. Although the HYME-D system demonstrated high denitrification efficiency (74.93%) and nitrate removal rate reached 2.62 mmol N/(L⋅d), the MAME-D system exhibited a denitrification efficiency of almost 100% and nitrate removal rate of 4.37 mmol N/(L⋅d). The addition of sterile leachate increased the nitrate removal rate in both systems, but caused the decrease of methane consumption in HYME-D. A stable isotope batch experiment was carried out to investigate the metabolic products by monitoring the 13CO2 and 15N2O production. The production of organic intermediates such as citrate, lactic acid, acetate, and propionic acid were also observed, which exhibited a higher yield in HYME-D. Variations in the microbial communities were analyzed during the semi-continuous experiment. MAME-D was mainly conducted by the association of type Ⅰ methanotroph Methylomonas and the methylotrophic denitrifier Methylotenera. Methane fermentation processed by Methylomonas under hypoxic conditions produced more complex organic intermediates and increased the diversity of related heterotrophic denitrifiers. The addition of sterile real leachate, resulting in increase of COD/N, influenced the microbial community of HYME-D system significantly.
Afficher plus [+] Moins [-]Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems Texte intégral
2019
Mole, Rachel A. | Brooks, Bryan W.
As the global population becomes more concentrated in urban areas, resource consumption, including access to pharmaceuticals, is increasing and chemical use is also increasingly concentrated. Unfortunately, implementation of waste management systems and wastewater treatment infrastructure is not yet meeting these global megatrends. Herein, pharmaceuticals are indicators of an urbanizing water cycle; antidepressants are among the most commonly studied classes of these contaminants of emerging concern. In the present study, we performed a unique global hazard assessment of selective serotonin reuptake inhibitors (SSRIs) in water matrices across geographic regions and for common wastewater treatment technologies. SSRIs in the environment have primarily been reported from Europe (50%) followed by North America (38%) and Asia-Pacific (10%). Minimal to no monitoring data exists for many developing regions of the world, including Africa and South America. From probabilistic environmental exposure distributions, 5th and 95th percentiles for all SSRIs across all geographic regions were 2.31 and 3022.1 ng/L for influent, 5.3 and 841.6 ng/L for effluent, 0.8 and 127.7 ng/L for freshwater, and 0.5 and 22.3 ng/L for coastal and marine systems, respectively. To estimate the potential hazards of SSRIs in the aquatic environment, percent exceedances of therapeutic hazard values of specific SSRIs, without recommended safety factors, were identified within and among geographic regions. For influent sewage and wastewater effluents, sertraline exceedances were observed 49% and 29% of the time, respectively, demonstrating the need to better understand emerging water quality hazards of SSRIs in urban freshwater and coastal ecosystems. This unique global review and analysis identified regions where more monitoring is necessary, and compounds requiring toxicological attention, particularly with increasing aquatic reports of behavioral perturbations elicited by SSRIs.
Afficher plus [+] Moins [-]Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments Texte intégral
2019
Chen, Chengyu | Wei, Jingyue | Li, Jing | Duan, Zhihui | Huang, Weilin
Soot nanoparticles (SNPs) produced from incomplete combustion have strong impacts on aquatic environments as they eventually reach surface water, where their environmental fate and transport are largely controlled by aggregation. This study investigated the aggregation kinetics of SNPs in the presence of macromolecules including fulvic acid (FA), humic acid (HA), alginate polysaccharide, and bovine serum albumin (BSA, protein) under various environmentally relevant solution conditions. Our results showed that increasing salt concentrations induced SNP aggregation by suppressing electrostatic repulsion and that CaCl2 exhibited stronger effect than NaCl in charge neutralization, which is in agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation rates of SNPs were variously reduced by macromolecules, and such stabilization effect was the greatest by BSA, followed by HA, alginate, and FA. Steric repulsion resulting from macromolecules adsorbed on SNP surfaces was mainly responsible for enhancing SNP stability. Such steric repulsion appeared to be affected by macromolecular structure, as BSA having a more compact globular structure on SNP surfaces imparted long-range steric repulsive forces and retarded the SNP aggregation rate by 10–100 times. In addition, alginate was shown to enhance SNP aggregation by ∼10 times at high CaCl2 concentrations due to alginate gel formation via calcium bridging. The results may bear strong significance for the fate and transport of SNPs in both natural and controlled environmental systems.
Afficher plus [+] Moins [-]Solidification/stabilization of Pb2+ and Zn2+ in the sludge incineration residue-based magnesium potassium phosphate cement: Physical and chemical mechanisms and competition between coexisting ions Texte intégral
2019
Cao, Xing | Wang, Weibing | Ma, Rui | Sun, Shichang | Lin, Junhao
In order to exhaustively investigate the physical and chemical mechanisms of heavy metal immobilization in sludge incineration residue (SIR)-based magnesium potassium phosphate cement (MKPC), this work investigated the influence of Pb²⁺ and Zn²⁺ on the compressive strength and microstructure of SIR-based MKPC, and the efficiency of Pb and Zn immobilization. Taking the difference of Ksp (solubility product) of different heavy metal compounds as the entry point, the physical and chemical mechanisms of Pb and Zn immobilization, and the competitive mechanism between coexisting ions, were comprehensively analyzed. It was discovered that Pb²⁺ is in the form Pb₃(PO₄)₂, and Zn²⁺ is immobilized in the form Zn₂(OH)PO₄ [Zn₃(PO₄)₂ is preferentially formed, when the pH > 7, Zn₃(PO₄)₂ is converted to Zn₂(OH)PO₄]. The low solubility of heavy metal phosphates is the main reason that Pb²⁺ and Zn²⁺ are well immobilized. The preferential formation of Pb₃(PO₄)₂ (Kₛₚ = 8 × 10⁻⁴³) and Zn₃(PO₄)₂ (Kₛₚ = 9.0 × 10⁻³³) reduced the amount of MgKPO₄·6H₂O (Kₛₚ = 2.4 × 10⁻¹¹), resulting in a decrease in compressive strength. Besides, coexisting Pb²⁺ and Zn²⁺ has a competitive effect: Pb²⁺ will weaken the immobilization efficiency of Zn²⁺. The new exploration of these mechanisms provide a theoretical basis for rationally adjusting the Magnesia/Phosphate ratio to enhance the compressive strength and improve the efficiency of heavy metals immobilization.
Afficher plus [+] Moins [-]Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields Texte intégral
2019
Tschoeke, Paulo Henrique | Oliveira, Eugênio E. | Dalcin, Mateus S. | Silveira-Tschoeke, Marcela Cristina A.C. | Sarmento, Renato A. | Santos, Gil Rodrigues
The ecological and economic contributions of pollinator bees to agricultural production have been threatened by the inappropriate and excessive use of pesticides. These pesticides are often applied in areas with ecological peculiarities (e.g., the Neotropical savannah-like region termed as Cerrado) that were not considered during the product development. Here, we conducted field experiments with melon (i.e., Cucumis melo L.) plants cultivated under Brazilian Cerrado conditions and evaluated the impacts of botanical (i.e., neem-based insecticide) and synthetic (i.e., the pyrethroid insecticide deltamethrin and the fungicides thiophanate-methyl and chlorothalonil) pesticides on the flower visitation rates of naturally occurring pollinator bees. Our results revealed that both honey bees (i.e., Apis mellifera L.) and non-Apis bees visited melon flowers and the intensity of bee visitation was moderately correlated with yield parameters (e.g., number of marketable fruits and fruit yield). Pesticide treatments differentially affected bee species. For instance, Plebeia sp. bees were not affected by any pesticide treatment, whereas both A. mellifera and Halictus sp. bees showed reduced visitation intensity after the application of deltamethrin or neem-based insecticides. Fungicide treatment alone did not influence the bee's visitation intensity. Deltamethrin-treated melon fields produced significantly lighter marketable fruits, and the melon yield was significantly lower in melon fields treated with the neem-based insecticide. Thus, our findings with such pollinator bees reinforce the idea that field applications of botanical pesticides may represent as risky as the applications of synthetic compounds, indicating that these alternative products should be submitted to risk assessments comparable to those required for synthetic products.
Afficher plus [+] Moins [-]Temperature and clone-dependent effects of microplastics on immunity and life history in Daphnia magna Texte intégral
2019
Sadler, Daniel E. | Brunner, Franziska S. | Plaistow, Stewart J.
Microplastic (MP) pollution is potentially a major threat to many aquatic organisms. Yet we currently know very little about the mechanisms responsible for the effects of small MPs on phenotypes, and the extent to which effects of MPs are modified by genetic and environmental factors. Using a multivariate approach, we studied the effects of 500 nm polystyrene microspheres on the life history and immunity of eight clones of the freshwater cladoceran Daphnia magna reared at two temperatures (18 °C/24 °C). MP exposure altered multivariate phenotypes in half of the clones we studied but had no effect on others. In the clones that were affected, individuals exposed to MPs had smaller offspring at both temperatures, and more offspring at high temperature. Differences in response to MP exposure were unrelated to differences in particle uptake, but were instead linked to an upregulation of haemocytes, particularly at high temperature. The clone-specific, context-dependent nature of our results demonstrates the importance of incorporating genetic variation and environmental context into assessments of the impact of plastic particle exposure. Our results identify immunity as an important mechanism underpinning genetically variable responses to MP pollution and may have major implications for predicting consequences of MP pollution.
Afficher plus [+] Moins [-]Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: Evaluation on characteristics, mechanisms and performance Texte intégral
2019
Su, Minhua | Tsang, Daniel C.W. | Ren, Xinyong | Shi, Qingpu | Tang, Jinfeng | Zhang, Hongguo | Kong, Lingjun | Hou, Li'an | Song, Gang | Chen, Diyun
The effluents from nuclear mining processes contain relatively high content of radionuclides (such as uranium), which may seriously threaten the environment and human health. Herein, a novel adsorbent, porous hydroxyapatite, was prepared and proven highly efficient for removal of uranyl ions (U(VI)) given its high U(VI) uptake capacity of 111.4 mg/g, fast adsorption kinetics, and the potential stabilization of adsorbed U(VI). A nearly complete removal of U(VI) was achieved by porous HAP under optimized conditions. Langmuir model could well describe the adsorption equilibrium. The data fit well with pseudo-second-order kinetic model, suggesting that U(VI) adsorption is primarily attributed to chemisorption with porous HAP. Intraparticle diffusion analysis showed that the intraparticle diffusion is the rate-limiting step for U(VI) adsorption by porous HAP. After removal by porous HAP, the adsorbed U(VI) ions were incorporated into tetragonal autunite, which has a low solubility (log Ksp: −48.36). Our findings demonstrate that the porous HAP can effectively remediate uranium contamination and holds great promise for environmental applications.
Afficher plus [+] Moins [-]Target quantification of azole antifungals and retrospective screening of other emerging pollutants in wastewater effluent using UHPLC –QTOF-MS Texte intégral
2019
Assress, Hailemariam Abrha | Nyoni, Hlengilizwe | Mamba, Bhekie B. | Msagati, Titus A.M.
The information acquired by high resolution quadrupole-time of flight mass spectrometry (QTOF-MS) allows target analysis as well as retrospective screening for the presence of suspect or unknown emerging pollutants which were not included in the target analysis. Targeted quantification of eight azole antifungal drugs in wastewater effluent as well as new and relatively simple retrospective suspect and non-target screening strategy for emerging pollutants using UHPLC-QTOF-MS is described in this work. More than 300 (parent compounds and transformation products) and 150 accurate masses were included in the retrospective suspect and non-target screening, respectively. Tentative identification of suspects and unknowns was based on accurate masses, peak intensity, blank subtraction, isotopic pattern (mSigma value), compound annotation using data bases such as KEGG and CHEBI, and fragmentation pattern interpretation. In the targeted analysis, clotrimazole, fluconazole, itraconazole, ketoconazole and posaconazole were detected in the effluent wastewater sample, fluconazole being with highest average concentration (302.38 ng L⁻¹). The retrospective screening resulted in the detection of 27 compounds that had not been included in the target analysis. The suspect compounds tentatively identified included atazanavir, citalopram, climbazole, bezafibrate estradiol, desmethylvenlafaxine, losartan carboxylic acid and cetirizine, of which citalopram, estradiol and cetirizine were confirmed using a standard. Carbamazepine, atrazine, efavirenz, lopinavir, fexofenadine and 5-methylbenzotriazole were among the compounds detected following the non-targeted screening approach, of which carbamazepine was confirmed using a standard. Given the detection of the target antifungals in the effluent, the findings are a call for a wide assessment of their occurrence in aquatic environments and their role in ecotoxicology as well as in selection of drug resistant fungi. The findings of this work further highlights the practical benefits obtained for the identification of a broader range of emerging pollutants in the environment when retrospective screening is applied to high resolution and high accuracy mass spectrometric data.
Afficher plus [+] Moins [-]The EU watch list compounds in the Ebro delta region: Assessment of sources, river transport, and seasonal variations Texte intégral
2019
Gusmaroli, Lucia | Buttiglieri, Gianluigi | Petrović, M. (Mira)
The presence of xenobiotics in the aquatic environment has drawn scientific concern due to possible detrimental effects on the ecosystems. With EU Decision 2015/495, a first Watch list of compounds that could potentially represent a threat for the environment was created, with the objective of gathering high quality monitoring data and support their prioritization. Literature data are still very scarce and the presence of many of the compounds has not been investigated thoroughly. In this study, all the 17 compounds of the EU Watch list 2015/495 were monitored in 14 sampling locations, comprised of freshwater and, for the first time, wastewater. The study was carried out in the Ebro delta, in the north east of Spain, a representative and crucial area not only for its environmental and naturalistic significance, but also for Spain’s productivity, especially as regards rice agriculture. Results show that contamination originates both from wastewater treatment plants (WWTPs) and agricultural activities. High levels of pharmaceuticals were detected in wastewater, with azithromycin and diclofenac present at mean concentrations of 1.65 μg/L and 636 ng/L respectively. In freshwater samples, besides antibiotics and diclofenac, substantial contamination by pesticides was reported, with oxadiazon reaching up to 591 ng/L and imidacloprid being present in 93% of samples. Moreover, the study provided insight into the origin of the selected contaminants. The removal of the studied micropollutants in WWTPs was low to moderate. The assessment of risk quotients, calculated based on the available PNECs, demonstrated that the concentrations recorded for these compounds may pose a significant risk in most sampling sites.
Afficher plus [+] Moins [-]Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan plateau Texte intégral
2019
Shen, Hao | Dong, Shikui | Li, Shuai | Xiao, Jiannan | Han, Yuhui | Yang, Mingyue | Zhang, Jing | Gao, Xiaoxia | Xu, Yudan | Li, Yu | Zhi, Yangliu | Liu, Shiliang | Dong, Quanming | Zhou, Huakun | Yeomans, Jane C.
Nitrogen (N) deposition may alter physiological process of plants in grassland ecosystem. However, little is known about the response mechanism of individual plants in alpine regions to N deposition. We conducted a field experiment, and three treatments including 0 kg Nha⁻¹year⁻¹ (CK), 8 kgNha⁻¹year⁻¹ (Low N), and 72 kg N ha⁻¹ year⁻¹ (High N) were established to simulate N deposition in alpine meadow of Qinghai-Tibetan plateau. Our objectives were to determine the influence of N deposition on photosynthesis of different functional types of herbage species in alpine meadow, and finally characterize the links of plant productivity and photosynthesis with soil nutrients. The results showed that responses of alpine plants were species-specific under N deposition. Compared with grass species Agropyron cristatum and forb species Thalictrum aquilegifolium, the sedge species Carex melanantha was much more sensitive to N deposition; a lower N load (8 kgNha⁻¹year⁻¹) can cause a negative effect on its photosynthesis and productivity. Additionally, N deposition can promote plant N uptake and significantly decreased the C (carbon)/N (nitrogen) ratio. Compared with CK and low N deposition, high N deposition inhibited the photosynthesis and growth of the forb species Thalictrum aquilegifolium and sedge species Carex melanantha. In all three functional types of herbage species, the grass species A. cristatum tended to show a much higher photosynthetic capacity and better growth potential; thus, suggesting that grass species A. cristatum will be a more adaptative alpine plants under N deposition. Our findings suggested that plant photosynthetic responses to N deposition were species-specific, low N deposition was not beneficial for all the herbage species, and N deposition may change plant composition by the differential photosynthetic responses among species in alpine grassland. Plant composition shift to grass-dorminant in alpine regions might be attributed to a much higher photosynthetic potential and N use efficiency of grass species.
Afficher plus [+] Moins [-]