Affiner votre recherche
Résultats 241-250 de 7,250
Biodegradation of 4-nitroaniline by novel isolate Bacillus sp. strain AVPP64 in the presence of pesticides
2022
Silambarasan, Sivagnanam | Cornejo, Pablo | Vangnai, Alisa S.
In this study, Bacillus sp. strain AVPP64 was isolated from diuron-contaminated soil. It showed 4-nitroaniline (4-NA) degradation, pesticide tolerance, and self-nutrient integration via nitrogen (N)-fixation and phosphate (P)-solubilization. The rate constant (k) and half-life period (t₁/₂) of 4-NA degradation in the aqueous medium inoculated with strain AVPP64 were observed to be 0.445 d⁻¹ and 1.55 d, respectively. Nevertheless, in the presence of chlorpyrifos, profenofos, atrazine and diuron pesticides, strain AVPP64 degraded 4-NA with t₁/₂ values of 2.55 d, 2.26 d, 2.31 d and 3.54 d, respectively. The strain AVPP64 fixed 140 μg mL⁻¹ of N and solubilized 103 μg mL⁻¹ of P during the presence of 4-NA. In addition, strain AVPP64 produced significant amounts of plant growth-promoting metabolites like indole 3-acetic acid, siderophores, exo-polysaccharides and ammonia. In the presence of 4-NA and various pesticides, strain AVPP64 greatly increased the growth and biomass of Vigna radiata and Crotalaria juncea plants. These results revealed that Bacillus sp. strain AVPP64 can be used as an inoculum for bioremediation of 4-NA contaminated soil and sustainable crop production even when pesticides are present.
Afficher plus [+] Moins [-]Effect of photooxidation on size distribution, light absorption, and molecular compositions of smoke particles from rice straw combustion
2022
Zhao, Ranran | Zhang, Qixing | Xu, Xuezhe | Wang, Wenjia | Zhao, Weixiong | Zhang, Weijun | Zhang, Yongming
Organic aerosol (OA) emitted from biomass burning (BB) impacts air quality and global radiation balance. However, the comprehensive characterization of OA remains poorly understood because of the complex evolutionary behavior of OA in atmospheric processes. In this work, smoke particles were generated from rice straw combustion. The effect of OH radicals photooxidation on size distribution, light absorption, and molecular compositions of smoke particles was systematically investigated. The results showed that the median diameters of smoke particles increased by a factor of approximately 1.2 after photooxidation. In the particle compositions, although both non-polar fractions (n-hexane-soluble organic carbon, HSOC) and polar fractions (water-soluble organic carbon, WSOC) underwent photobleaching after aging, the photobleaching properties of HSOC (1.87–2.19) was always higher than that of WSOC (1.52–1.33). Besides, the light-absorbing properties of HSOC were higher than that of WSOC, showing a factor of approximately 1.75 times for mass absorption efficiency at 365 nm (MAE₃₆₅). Consequently, the simple forcing efficiency (SFE) caused by absorption showed that HSOC has higher radiation effects than WSOC. After photooxidation, the concentration of 16 PAHs in HSOC fractions significantly decreased by 15.3%–72.5%. In WSOC fractions, the content of CHO, CHONS, and CHOS compounds decreased slightly, while the content of CHON compounds increased. Meantime, the variations in molecular properties supported the decrease in light absorption of WSOC fractions. These results reveal the aging behavior of smoke particles, then stress the importance of non-polar organic fractions in particles, providing new insights into understanding the atmospheric pollution caused by BB smoke particles.
Afficher plus [+] Moins [-]Bioimmobilization of lead in phosphate mining wasteland by isolated strain Citrobacter farmeri CFI-01
2022
Li, Yizhong | Guo, Shuyu | Zheng, Yunting | Yu, Junxia | Chi, Ruan | Xiao, Chunqiao
Industrial phosphate rock (PR) treatment has introduced lead (Pb) contamination into phosphate mining wasteland, causing serious contamination. Although bioremediation is considered an effective method and studies have investigated the bioimmobilization of Pb contamination in phosphate mining wasteland by phosphate-solubilizing bacteria (PSB), the bioimmobilization mechanism remains unclear. In this study, a strain Citrobacter farmeri CFI-01 with phosphate-solubilizing and Pb-tolerant abilities was isolated from a phosphate mining wasteland. Liquid culture experiments showed that the maximum content of soluble phosphate and the percentage amount of Pb immobilized after 14 days were 351.5 mg/L and 98.18%, respectively, with a decrease in pH. Soil experiments showed that CFI-01 had reasonable bioimmobilization ability, and the percentage amount of Pb immobilized was increased by 7.790% and 22.18% in the groups inoculated with CFI-01, respectively, compared with that of the groups not inoculated with CFI-01. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses showed that the immobilization of Pb was also ascribed to changes in the functional groups (e.g., hydroxyl and carboxyl groups) and the formation of lead phosphate sediments. Finally, the results of the metagenomic analysis indicated that changes in the microbial community structure, enrichment of related functional abundances (e.g., metal metabolism, carbohydrate metabolism, and amino acid metabolism functions), and activation of functional genes (e.g., zntA, smtB, cadC, ATOX1, smtA, and ATX1) could help immobilize soil Pb contamination and explore the mechanism of bacterial bioimmobilization in Pb-contaminated soil. This study provides insights for exploring the immobilization mechanism of Pb contamination in phosphate mining wasteland using PSB, which has significance for further research.
Afficher plus [+] Moins [-]Metagenomic insights into the antibiotic resistome in freshwater and seawater from an Antarctic ice-free area
2022
Zhang, Tao | Ji, Zhongqiang | Li, Jun | Yu, Liyan
The comprehensive profiles of antibiotic resistance genes (ARGs) in the Antarctic water environments and their potential health risks are not well understood. The present study characterized the bacterial community compositions and ARG profiles of freshwater (11 samples) and seawater (28 samples) around the Fildes Region (an ice-free area in Antarctica) using a shotgun metagenomic sequencing approach for the first time. There were significant differences in the compositions of the bacterial community and ARG profiles between freshwater and seawater. In the 39 water samples, 114 ARG subtypes belonging to 15 ARG types were detectable. In freshwater, the dominant ARGs were related to multidrug and rifamycin resistance. In seawater, the dominant ARGs were related to peptide, multidrug, and beta-lactam resistance. Both the bacterial community compositions and ARG profiles were significantly related to certain physicochemical properties (e.g., pH, salinity, NO₃⁻). Procrustes analysis revealed a significant correlation between the bacterial community compositions and ARG profiles of freshwater and seawater samples. A total of 31 metagenome-assembled genomes (MAGs) carrying 35 ARG subtypes were obtained and identified. The results will contribute to a better evaluation of the ARG contamination in relation to human health in the Antarctic aquatic environments.
Afficher plus [+] Moins [-]Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater
2022
Kumar, Vaidyanathan Vinoth | Venkataraman, Swethaa | Kumar, P Senthil | George, Jenet | Rajendran, Devi Sri | Shaji, Anna | Lawrence, Nicole | Saikia, Kongkona | Rathankumar, Abiram Karanam
The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.9 U/g) from Pleurotus ostreatus. Among the different inducers supplemented, CuSO₄ (0.5 mM) showed an eight-fold increase in enzyme production (30.8 U/g) after 240 h of incubation. The catalytic efficiency of laccase was observed as 128.7 ± 8.47 S⁻¹mM⁻¹ for syringaldazine oxidation at optimum pH 4.0 and 40 °C. Laccase activity was completely inhibited by lead (II) ion, mercury (II) ion, sodium dodecyl sulphate, sodium azide and 1,4 dithiothretiol and induced significantly by manganese (II) ion and rhamnolipid. After treating BRW with laccase, the concentrations of PAHs and phenolic contaminants of 1144 μg/L and 46160 μg/L were reduced to 96 μg/L and 16100 μg/L, respectively. The ability of laccase to effectively degrade PAHs in the presence of different phenolic compounds implies that phenolic contaminants may play a role in PAHs degradation. After 240 h, organic contaminants were removed from BRW in the following order: phenol >2,4-dinitrophenol > 2-methyl-4,6-dinitrophenol > 2,3,4,6-tetrachlorophenol > acenaphthene > fluorine > phenanthrene > fluoranthene > pyrene > anthracene > chrysene > naphthalene > benzo(a)anthracene > benzo(a)pyrene > benzo(b)fluoranthene > pentachlorophenol > indeno(1,2,3-cd)pyrene > benzo(j) fluoranthene > benzo[k]fluoranthène. The multiple contaminant remediation from the BRW by enzymatic method, clearly suggests that the laccase can be used as a bioremediation tool for the treatment of wastewater from various industries.
Afficher plus [+] Moins [-]Comparative effects of crystalline, poorly crystalline and freshly formed iron oxides on the colloidal properties of polystyrene microplastics
2022
Vu, Trang T.T. | Nguyen, Phat H. | Pham, Trinh V. | Do, Phuong Q. | Dao, Trang T. | Nguyen, Anh D. | Nguyen-Thanh, Lan | Dinh, Van M. | Nguyen, Minh N.
Colloid-sized microplastics (MPs) are ubiquitous in aquatic environments and can share the same transport route together with various crystalline, poorly crystalline and freshly formed iron oxides. However, the colloidal interactions between these colloid constituents are not fully understood. This study was designed to investigate the colloidal properties of polystyrene microplastics (PSMPs) under the influence of haematite, goethite, ferrihydrite and freshly formed Fe oxide (FFFO). Dynamic light scattering was coupled with a test tube method to observe changes in the surface charge and colloidal dynamics of suspensions of PSMPs and Fe oxides. The overall effects on the aggregation of PSMPs are found to decrease in the following order: FFFO > ferrihydrite > goethite > haematite. The effects of these Fe oxides are found to strongly depend on pH. While the crystalline oxides play a dominant role in the acidic environment, poorly crystalline oxides show greater effects on PSMP aggregation in an alkaline environment. Heteroaggregation due to decreasing electrostatic interactions is the major mechanism that governs the colloidal dynamics of PSMPs and Fe oxides. It can be inferred that the copresence of Fe oxides and MPs can delay the transport of MPs or even change the destination for MPs.
Afficher plus [+] Moins [-]Artificial light at night (ALAN) affects behaviour, but does not change oxidative status in freshwater shredders
2022
Czarnecka, Magdalena | Jermacz, Łukasz | Glazińska, Paulina | Kulasek, Milena | Kobak, Jarosław
Artificial light at night (ALAN) alters circadian rhythms in animals and therefore can be a source of environmental stress affecting their physiology and behaviour. The impact of ALAN can be related to the increased light level, but also to the spectral composition of night lighting. Previous research showed that many species can be particularly sensitive to the LED light, but it is unclear if they respond to its broad spectrum or specifically to the blue light wavelength. In this study, we tested whether dim ALAN (2 lx) differing in the spectral quality (warm white LED, blue LED, high-pressure sodium HPS light) modifies behaviour and changes oxidative status in two nocturnal freshwater shredder species: Dikerogammarus villosus and Gammarus jazdzewskii (Gammaroidea, Amphipoda). Our experiment revealed that ALAN, irrespective of its spectral quality, did not affect the oxidative stress markers in cells (the level of reactive oxygen species and lipid peroxidation). However, ALAN changed the gammarid behaviour in a species-specific manner, which can potentially reduce the fitness of the shredders. Dikerogammarus villosus avoided all types of light compared to darkness. Therefore, confined to the shelter, D. villosus may have fewer opportunities to forage and/or mate. Gammarus jazdzewskii was sensitive only to the narrow-spectrum blue light, but did not respond to the HPS and white LED light. Avoidance is a typical response of gammarids to natural light, thus the disruption of this behaviour in the presence of common ALAN sources can increase the predation risk in this species. To summarize, behavioural modifications induced by ALAN seem more pronounced than changes in physiology and can constitute the main driver of disturbances in the processing of organic matter in freshwater ecosystems by invertebrate shredders.
Afficher plus [+] Moins [-]Immunotoxicity of radiofrequency radiation
2022
Yadav, Himanshi | Sharma, Radhey Shyam | Singh, Rajeev
Growing evidence recommends that radiofrequency radiations might be a new type of environmental pollutant. The consequences of RFR on the human immune system have gained considerable interest in recent years, not only to examine probable negative effects on health but also to understand if RFR can modulate the immune response positively. Although several studies have been published on the immune effects of RFR but no satisfactory agreement has been reached. Hence this review aims to evaluate the RFR modulating impacts on particular immune cells contributing to various innate or adaptive immune responses. In view of existing pieces of evidence, we have suggested an intracellular signaling cascade responsible for RFR action. The bio-effects of RFR on immune cell morphology, viability, proliferation, genome integrity, and immune functions such as ROS, cytokine secretion, phagocytosis, apoptosis, etc. are discussed. The majority of existing evidence point toward the possible shifts in the activity, number, and/or function of immunocompetent cells, but the outcome of several studies is still contradictory and needs further studies to reach a conclusion. Also, the direct association of experimental studies to human risks might not be helpful as exposure parameters vary in real life. On the basis of recent available literature, we suggest that special experiments should be designed to test each particular signal utilized in communication technologies to rule out the hypothesis that longer exposure to RFR emitting devices would affect the immunity by inducing genotoxic effects in human immune cells.
Afficher plus [+] Moins [-]Toxic mechanism of two cyanobacterial volatiles β-cyclocitral and β-ionone on the photosynthesis in duckweed by altering gene expression
2022
Du, Siyi | Xu, Haozhe | Yang, Mengdan | Pan, N. (Ning) | Zheng, Tiefeng | Xu, Chenyi | Li, Yan | Zuo, Zhaojiang
Volatile organic compounds (VOCs) promote cyanobacteria dominating eutrophicated waters, with aquatic plant decrease and even disappearance. To uncover the toxic mechanism of cyanobacterial VOCs on aquatic plants, we investigated the growth, photosynthetic pigment levels, photosynthetic abilities and related gene expression in duckweed treated with β-cyclocitral and β-ionone, 2 main components in the VOCs. The levels of chlorophylls and carotenoids gradually declined with raising the concentration of the 2 compounds and prolonging the treatment time. Their decline should result from the down-regulation of 8 genes associated with photosynthetic pigment biosynthesis and up-regulation of 2 genes involved in carotenoid degradation. The reduction was also found in the photosystem II (PSII) efficiency and O₂ evolution rate, which should result from the lowered photosynthetic pigment levels and down-regulation of 38 genes related with photosynthetic process. The frond numbers, total frond area and fresh weight gradually decreased with raising the 2 compound concentration, which may result from the lowered photosynthetic abilities as well as down-regulated expression of 7 genes associated with growth-promoting hormone biosynthesis and signal transduction. It can be speculated that cyanobacterial VOCs may poison aquatic plants by lowering the photosynthesis and growth through altering related gene expression.
Afficher plus [+] Moins [-]Effect of microbial community structures and metabolite profile on greenhouse gas emissions in rice varieties
2022
Ding, Huina | Liu, Tianqi | Hu, Quanyi | Liu, Min | Cai, Mingli | Jiang, Yang | Cao, Cougui
Rice paddy fields are major sources of atmospheric methane (CH₄) and nitrous oxide (N₂O). Rice variety is an important factor affecting CH₄ and N₂O emissions. However, the interactive effects of rice metabolites and microorganisms on CH₄ and N₂O emissions in paddy fields are not clearly understood. In this study, a high greenhouse gas-emitting cultivar (YL 6) and a low greenhouse gas-emitting cultivar (YY 1540) were used as experimental materials. Metabolomics was used to examine the roots, root exudates, and bulk soil metabolites. High-throughput sequencing was used to determine the microbial community composition. YY 1540 had more secondary metabolites (flavonoids and isoflavonoids) in root exudates than YL 6. It was enriched with the uncultured members of the families Gemmatimonadanceae and Rhizobiales_Incertae_Sedis in bulk soil, and genera Burkholderia-Caballeronia-Paraburkholderia, Magnetospirillum, Aeromonas, and Anaeromyxobacter in roots, contributing to increased expression of pmoA and nosZ genes and reducing CH₄ and N₂O emissions. YL 6 roots and root exudates contained higher contents of carbohydrates [e.g., 6-O- acetylarbutin and 2-(3- hydroxyphenyl) ethanol 1′-glucoside] than those of YY 1540. They were enriched with genera RBG-16-58-14 in bulk soil and Exiguobacterium, and uncultured member of the Kineosporiaceae family in roots, which contributed to increased expression of mcrA, ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nirS, and nirK genes and greenhouse gas emissions. In general, these results established a link between metabolites, microorganisms, microbial functional genes, and greenhouse gas emissions. The metabolites of root exudates and roots regulated CH₄ and N₂O emissions by influencing the microbial community composition in bulk soil and roots.
Afficher plus [+] Moins [-]