Affiner votre recherche
Résultats 2421-2430 de 4,294
Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends
2017
Lamani, Venkatesh Tavareppa | Yadav, Ajay Kumar | Gottekere, Kumar Narayanappa
Nitrogen oxides and smoke are the substantial emissions for the diesel engines. Fuels comprising high-level oxygen content can have low smoke emission due to better oxidation of soot. The objective of the paper is to assess the potential to employ oxygenated fuel, i.e., n-butanol and its blends with the neat diesel from 0 to 30% by volume. The experimental and computational fluid dynamic (CFD) simulation is carried out to estimate the performance, combustion, and exhaust emission characteristics of n-butanol-diesel blends for various injection timings (9°, 12°, 15°, and 18°) using modern twin-cylinder, four-stroke, common rail direct injection (CRDI) engine. Experimental results reveal the increase in brake thermal efficiency (BTE) by ~ 4.5, 6, and 8% for butanol-diesel blends of 10% (Bu10), 20% (Bu20), and 30% (Bu30), respectively, compared to neat diesel (Bu0). Maximum BTE for Bu0 is 38.4%, which is obtained at 12° BTDC; however, for Bu10, Bu20 and Bu30 are 40.19, 40.9, and 41.7%, which are obtained at 15° BTDC, respectively. Higher flame speed of n-butanol-diesel blends burn a large amount of fuel in the premixed phase, which improves the combustion as well as emission characteristics. CFD and experimental results are compared and validated for all fuel blends for in-cylinder pressure and nitrogen oxides (NOₓ), and found to be in good agreement. Both experimental and simulation results witnessed in reduction of smoke opacity, NOₓ, and carbon monoxide emissions with the increasing n-butanol percentage in diesel fuel.
Afficher plus [+] Moins [-]Effects of different fertilizers on growth and nutrient uptake of Lolium multiflorum grown in Cd-contaminated soils
2017
Liu, Mohan | Li, Yang | Che, Yeye | Deng, Shaojun | Xiao, Yan
This study aimed to explore the effects of different fertilizers and their combinations on growth and nutrient and Cd uptake of Lolium multiflorum. Compared with control treatment, chemical fertilizer, organic manure, and their conjunctions with biofertilizer increased shoot biomass. Biofertilizers were found to cause significant reductions in shoot biomass of plants grown in organic manure-treated and control soil. Decreased soil-available N and P and shoot N and K concentrations in biofertilizer amendment treatments indicated that plant growth and nutrient absorption might be negatively affected under nutrient deficiency conditions. Elevated shoot biomasses contributed to the highest shoot Cd contents in chemical fertilizer and chemical fertilizer + biofertilizer treatments among all treatments. But the maximum translocation efficiency occurred in biofertilizer + chemical fertilizer + organic manure treatment, followed by organic manure and chemical fertilizer + organic manure treatments. Based on the results, we can conclude that the application of only the biofertilizer Bacillus subtilis should be avoided in nutrient-limited soils. Chemical fertilizer application could benefit the amount of Cd in shoots, and organic manure application and its combinations could result in the higher translocation efficiency.
Afficher plus [+] Moins [-]Nanoparticular surface-bound PCBs, PCDDs, and PCDFs—a novel class of potentially higher toxic POPs
2017
Schön, Peter | Ctistis, Georgios | Bakker, Wouter | Luthe, Gregor
In a previous study, Env Sci Poll Res:1-7, 2015 showed that polychlorinated biphenyls (PCBs), polychlorinated dibenzo dioxins (PCDDs), and polychlorinated dibenzo furanes (PCDFs) are found in commercially available (nano) particular titanium dioxide as a result of the fabrication. Here, we give a brief perspective and reason the toxicity of these new classes of persistent organic pollutants (POPs) by reviewing also their nanoparticular properties, such as surface-to-volume ratio, photocatalytic activity, polarity shifts, and stealth effect. These insights point towards a new class of POPs and toxicologic effects, which are related to the size but not a result of nanotechnology itself. We pave the way to the understanding of until now unresolved very complex phenomena, such as the indoor exposure, formation, and transformation of POP and sick-building syndrome. This is a fundamental message for nanotoxicology and kinetics and should be taken into account when determining the toxicity of nanomaterials and POPs separately and as a combination.
Afficher plus [+] Moins [-]Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots
2017
Pérez-Palacios, Patricia | Romero-Aguilar, Asunción | Delgadillo, Julián | Doukkali, Bouchra | Caviedes, Miguel A. | Rodríguez-Llorente, Ignacio D. | Pajuelo, Eloísa
Excess copper (Cu) in soils has deleterious effects on plant growth and can pose a risk to human health. In the last decade, legume-rhizobium symbioses became attractive biotechnological tools for metal phytostabilization. For this technique being useful, metal-tolerant symbionts are required, which can be generated through genetic manipulation.In this work, a double symbiotic system was engineered for Cu phytostabilization: On the one hand, composite Medicago truncatula plants expressing the metallothionein gene mt4a from Arabidopsis thaliana in roots were obtained to improve plant Cu tolerance. On the other hand, a genetically modified Ensifer medicae strain, expressing copper resistance genes copAB from Pseudomonas fluorescens driven by a nodulation promoter, nifHp, was used for plant inoculation. Our results indicated that expression of mt4a in composite plants ameliorated plant growth and nodulation and enhanced Cu tolerance. Lower levels of ROS-scavenging enzymes and of thiobarbituric acid reactive substances (TBARS), such as malondialdehyde (a marker of lipid peroxidation), suggested reduced oxidative stress. Furthermore, inoculation with the genetically modified Ensifer further improved root Cu accumulation without altering metal loading to shoots, leading to diminished values of metal translocation from roots to shoots. The double modified partnership is proposed as a suitable tool for Cu rhizo-phytostabilization.
Afficher plus [+] Moins [-]Plasticizers and bisphenol A, in packaged foods sold in the Tunisian markets: study of their acute in vivo toxicity and their environmental fate
2017
Beltifa, Asma | Feriani, Anouar | Machreki, Monia | Ghorbel, Asma | Ghazouani, Lakhdar | Di Bella, Giuseppa | Van Loco, Joris | Reyns, Tim | Mansour, HediBen
Today, processed and packaged foods are considered as among the major sources of human exposure to plasticizers and bisphenol which migrate from plastic packing. In the present study, a wide range of food products sold on the Tunisian market such as grain and grain products, milk and dairy products, fats and oil, drink, fish, and sweets have been analyzed firstly in order to identify the presence of phthalates and bisphenol. Then, the identified chemical molecules were studied for their environmental fate and tested in vivo for its toxicity in mice models. The food products analyzed using GC-MS/MS indicated the presence of the benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), bis(2-ethylhexyl) phthalate (DEHP), diisodecyl phthalate (DiDP), diisononyl phthalate (DiNP), and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINC) and which using UPLC-MS/MS demonstrated the presence of bisphenol A of all food products. However, compared to other phthalates, BBP was found at high concentrations in the puff pastry (123 mg/kg), milk (2.59 mg/kg), butter (1.5 mg/kg), yogurt (2.23 mg/kg), oil (6.94 mg/kg), water (0.57 mg/kg), candy 1 (2.35 mg/kg), candy 2 (0.81 mg/kg), orange juice (1.25 mg/kg), peach juice (1.26 mg/kg), fruit juices (0.4 mg/kg), and chocolate (0.884 mg/kg). The obtained data in vivo clearly showed that the acute administration of BBP caused hepatic and renal damage as demonstrated by an increase in biochemical parameters as well as the activities of plasma marker enzymes such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, blood urea nitrogen, glucose, urea, creatinine, and uric acid when compared to the control group. By the same occurrence, the histopathological study revealed that BBP strongly modified the structure of hepatic and renal tissues. In addition, the plasticizers and BBP will therefore discharge via wastewater treatment plants in aquatic system and could reach marine organisms such as fish. We have followed the fate of BBP in bream Sparus aurata. In fact, chemical analysis showed the contamination of wild S. aurata by BBP from Sousse Coast (1.5 mg/kg) and wild S. aurata from Monastir Coast (0.33 mg/kg).
Afficher plus [+] Moins [-]Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first- and second-generation biodiesel in a diesel engine
2017
Rahman, MdMofijur | Rasul, MohammadGolam | Hassan, NurMd Sayeed | Ācāt, Apulkalām | Uddin, MdNasir
This paper aims to investigate the effect of the addition of 5% alcohol (butanol) with biodiesel-diesel blends on the performance, emissions, and combustion of a naturally aspirated four stroke multi-cylinder diesel engine at different engine speeds (1200 to 2400 rpm) under full load conditions. Three types of local Australian biodiesel, namely macadamia biodiesel (MB), rice bran biodiesel (RB), and waste cooking oil biodiesel (WCB), were used for this study, and the data was compared with results for conventional diesel fuel (B0). Performance results showed that the addition of butanol with diesel-biodiesel blends slightly lowers the engine efficiency. The emission study revealed that the addition of butanol additive with diesel-biodiesel blends lowers the exhaust gas temperature (EGT), carbon monoxide (CO), nitrogen oxide (NOx), and particulate matter (PM) emissions whereas it increases hydrocarbon (HC) emissions compared to B0. The combustion results indicated that in-cylinder pressure (CP) for additive added fuel is higher (0.45–1.49%), while heat release rate (HRR) was lower (2.60–9.10%) than for B0. Also, additive added fuel lowers the ignition delay (ID) by 23–30% than for B0. Finally, it can be recommended that the addition of 5% butanol with Australian biodiesel-diesel blends can significantly lower the NOx and PM emissions.
Afficher plus [+] Moins [-]Hydrothermal synthesis of TiO2 hollow spheres adorned with SnO2 quantum dots and their efficiency in the production of methanol via photocatalysis
2017
Chimmikuttanda, SajanPonnappa | Naik, Amol | Akple, MaxwellSelase | Rajegowda, RaviHethegowdanahally
TiO₂ hollow spheres and TiO₂ hollow spheres adorned with SnO₂ quantum dots were synthesized successfully under mild temperature and autogenous pressure using the hydrothermal route. X-ray diffraction, field emission scanning electron microscopy, scanning electron microscopy, transmission electron microscope, photoluminescence spectroscopy, and UV–vis spectroscopy were used to characterize the physical and chemical nature of the synthesized sample. The characterized samples were used in the photocatalytic applications to reduce the concentration of carbon dioxide in the presence of water under the influence of visible light. Our observation confirmed that with increasing SnO₂ content there is a tremendous change in the photocatalytic performance of the samples, due to free mobility of the electrons and holes and decline in charge recombination centers formed with the formation of nano-heterojunction between SnO₂ and TiO₂. The greater photocatalytic production of methanol was achieved using 2ST sample, i.e., 1.61 μmol/g/h which tends to decrease with an increase in SnO₂ content.
Afficher plus [+] Moins [-]How does exposure to pesticides vary in space and time for residents living near to treated orchards?
2017
Wong, HieLing | Garthwaite, David G. | Ramwell, Carmel T. | Brown, Colin D.
This study investigated changes over 25 years (1987–2012) in pesticide usage in orchards in England and Wales and associated changes to exposure and risk for resident pregnant women living 100 and 1000 m downwind of treated areas. A model was developed to estimate aggregated daily exposure to pesticides via inhaled vapour and indirect dermal contact with contaminated ground, whilst risk was expressed as a hazard quotient (HQ) based on estimated exposure and the no observed (adverse) effect level for reproductive and developmental effects. Results show the largest changes occurred between 1987 and 1996 with total pesticide usage reduced by ca. 25%, exposure per unit of pesticide applied slightly increased, and a reduction in risk per unit exposure by factors of 1.3 to 3. Thereafter, there were no consistent changes in use between 1996 and 2012, with an increase in number of applications to each crop balanced by a decrease in average application rate. Exposure per unit of pesticide applied decreased consistently over this period such that values in 2012 for this metric were 48–65% of those in 1987, and there were further smaller decreases in risk per unit exposure. All aggregated hazard quotients were two to three orders of magnitude smaller than one, despite the inherent simplifications of assuming co-occurrence of exposure to all pesticides and additivity of effects. Hazard quotients at 1000 m were 5 to 16 times smaller than those at 100 m. There were clear signals of the impact of regulatory intervention in improving the fate and hazard profiles of pesticides used in orchards in England and Wales over the period investigated.
Afficher plus [+] Moins [-]Day-night variability of water-soluble ions in PM10 samples collected at a traffic site in southeastern Spain
2017
Galindo, Nuria | Yubero, Eduardo
The present work reports diurnal and nocturnal concentrations of water-soluble ions associated to PM₁₀ samples collected during the warm and cold seasons in the urban center of Elche (Southeastern Spain). Statistical differences between daytime and nighttime levels of PM₁₀ were only observed during winter. The lower concentrations during the night were most likely the result of a reduction in traffic-induced road dust resuspension, since nocturnal concentrations of calcium also exhibited a significant decrease compared to daytime levels. During the warm season, nitrate was the only component that showed a statistically significant increase from day to night. The lower nocturnal temperatures that prevent the thermal decomposition of ammonium nitrate and the formation of nitric acid favored by the higher relative humidity at night are the most probable reasons for this variation. The close relationship between nitrate formation and relative humidity during nighttime was supported by the results of the correlation analysis. The reaction of sulfuric and nitric acids with CaCO₃ occurred to a greater extent during daytime in summer.
Afficher plus [+] Moins [-]Simultaneous removal of nano-ZnO and Zn2+ based on transportation character of nano-ZnO by coagulation: Enteromorpha polysaccharide compound polyaluminum chloride
2017
Sun, Jianzhang | Gao, Baoyu | Zhao, Shuang | Li, Ruihua | Yue, Qinyan | Wang, Yan | Liu, Siqi
It is confirmed that nano-ZnO (nZnO) has impact on environment and is considered as heavy metal pollutants. It is a new technology that applies coagulation process to simultaneous removal of the nanoparticles and heavy metals. Environmental chemical behavior of ZnO in water, such as the dispersion, aggregation, sedimentation, and dissolution of releasing metal ions, has been systematically studied in this paper. The result shows that three kinds of nZnO state such as compacted sediment, suspended, and released is separately 36.54 %, 40.61 %, and 22.86 %. Enteromorpha polysaccharide (Ep) was used together with polyaluminum chloride (PAC) in surface water purification. In order to study the mechanism of simultaneous removal of residual nZnO particles and Zn²⁺, coagulation process was further applied in this study. The evolution of flocs size, strength, and recovery ability and fractal structure due to Ep addition was systematically studied in this paper. Results indicated that PAC-Ep was efficient in removing nZnO and Zn²⁺, which leads to more than 95 % particles, 50–60 % natural organic matter (NOM) removed, and 35 % of resolved heavy metal ion adsorbing-chelation. Ep was an efficient coagulant aid in enhancing performance of coagulation and generating flocs with bigger sizes, faster growth rates, and higher recovery abilities. Additionally, the flocs formed by PAC-Ep presented a much looser structure than flocs formed only by PAC. Graphical abstract ᅟ
Afficher plus [+] Moins [-]