Affiner votre recherche
Résultats 251-260 de 576
Adaptive plastic responses to metal contamination in a multistress context: a field experiment in fish Texte intégral
2023
Petitjean, Quentin | Laffaille, Pascal | Perrault, Annie | Cousseau, Myriam | Jean, Séverine | Jacquin, Lisa | Laboratoire Méthodes Formelles (LMF) ; Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay) | Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | Evolution et Diversité Biologique (EDB) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) | Institut universitaire de France (IUF) ; Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
International audience
Afficher plus [+] Moins [-]Disruption of oogenesis and molting by methoprene and glyphosate in Gammarus fossarum: involvement of retinoic acid? Texte intégral
2023
Gauthier, Maxime | Defrance, Jérémy | Jumarie, Catherine | Vulliet, Emmanuelle | Garric, Jeanne | Boily, Monique | Geffard, Olivier | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Université du Québec à Montréal = University of Québec in Montréal (UQAM) | ISA-TRACES - Technologie et Recherche en Analyse Chimique pour l'Environnement et la Santé ; Institut des Sciences Analytiques (ISA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)
Insights into the molecular mechanisms of pesticide tolerance in the Aporrectodea caliginosa earthworm Texte intégral
2023
Barranger, Audrey | Klopp, Christophe | Le Bot, Barbara | Saramito, Gaëlle | Dupont, Lise | Llopis, Stéphanie | Wiegand, Claudia | Binet, Françoise
Insights into the molecular mechanisms of pesticide tolerance in the Aporrectodea caliginosa earthworm Texte intégral
2023
Barranger, Audrey | Klopp, Christophe | Le Bot, Barbara | Saramito, Gaëlle | Dupont, Lise | Llopis, Stéphanie | Wiegand, Claudia | Binet, Françoise
Diffuse pollution of the environment by pesticides has become a major soil threat to non-target organisms, such as earthworms for which declines have been reported. However some endogeic species are still abundant and persist in intensively cultivated fields, suggesting they become tolerant to long-term anthropogenic pressure. We thus considered the working hypothesis that populations of Aporrectodea caliginosa earthworms from conventionally managed fields developed a tolerance to pesticides compared with those from organically managed fields. To investigate this hypothesis, we studied earthworm populations of the same genetic lineage from soils that were either lowly or highly contaminated by pesticides to detect any constitutive expression of differentially expressed molecular pathways between these populations. Earthworm populations were then experimentally exposed to a fungicide—epoxiconazole—in the laboratory to identify different molecular responses when newly exposed to a pesticide. State-of-the-art omics technology (RNA sequencing) and bioinformatics were used to characterize molecular mechanisms of tolerance in a non-targeted way. Additional physiological traits (respirometry, growth, bioaccumulation) were monitored to assess tolerance at higher levels of biological organization. In the present study, we generated the de novo assembly transcriptome of A. caliginosa consisting of 64,556 contigs with N50 = 2862 pb. In total, 43,569 Gene Ontology terms were identified for 21,593 annotated sequences under the three main ontologies (biological processes, cellular components and molecular functions). Overall, we revealed that two same lineage populations of A. caliginosa earthworms, inhabiting similar pedo-climatic environment, have distinct gene expression pathways after they long-lived in differently managed agricultural soils with a contrasted pesticide exposure history for more than 22 years. The main difference was observed regarding metabolism, with upregulated pathways linked to proteolytic activities and the mitochondrial respiratory chain in the highly exposed population. This study improves our understanding of the long-term impact of chronic exposure of soil engineers to pesticide residues.
Afficher plus [+] Moins [-]Insights into the molecular mechanisms of pesticide tolerance in the Aporrectodea caliginosa earthworm Texte intégral
2023
Barranger, Audrey | Klopp, Christophe | Le Bot, Barbara | Saramito, Gaëlle | Dupont, Lise | Llopis, Stéphanie | Wiegand, Claudia | Binet, Françoise | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRAE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut de recherche en santé, environnement et travail (Irset) ; Université d'Angers (UA)-Université de Rennes (UR)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes (Biosit : Biologie - Santé - Innovation Technologique) | École des Hautes Études en Santé Publique [EHESP] (EHESP) | Laboratoire d'étude et de recherche en environnement et santé (LERES) ; École des Hautes Études en Santé Publique [EHESP] (EHESP) | Département des sciences en santé environnementale (DEESSE) ; École des Hautes Études en Santé Publique [EHESP] (EHESP) | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | The present study was funded by the Brittany region (France), the François Sommer Foundation (BUZHUG Project - 18XZ316-01D) and the Regional Directorate for the Environment, Planning and Housing (DREAL) through the PHYTOSOL project (N°EJ 2201157402).
International audience | Diffuse pollution of the environment by pesticides has become a major soil threat to non-target organisms, such as earthworms for which declines have been reported. However some endogeic species are still abundant and persist in intensively cultivated fields, suggesting they become tolerant to long-term anthropogenic pressure. We thus considered the working hypothesis that populations of Aporrectodea caliginosa earthworms from conventionally managed fields developed a tolerance to pesticides compared with those from organically managed fields. To investigate this hypothesis, we studied earthworm populations of the same genetic lineage from soils that were either lowly or highly contaminated by pesticides to detect any constitutive expression of differentially expressed molecular pathways between these populations. Earthworm populations were then experimentally exposed to a fungicide-epoxiconazole-in the laboratory to identify different molecular responses when newly exposed to a pesticide. State-of-the-art omics technology (RNA sequencing) and bioinformatics were used to characterize molecular mechanisms of tolerance in a non-targeted way. Additional physiological traits (respirometry, growth, bioaccumulation) were monitored to assess tolerance at higher levels of biological organization. In the present study, we generated the de novo assembly transcriptome of A. caliginosa consisting of 64,556 contigs with N50 = 2862 pb. In total, 43,569 Gene Ontology terms were identified for 21,593 annotated sequences under the three main ontologies (biological processes, cellular components and molecular functions). Overall, we revealed that two same lineage populations of A. caliginosa earthworms, inhabiting similar pedo-climatic environment, have distinct gene expression pathways after they long-lived in differently managed agricultural soils with a contrasted pesticide exposure history for more than 22 years. The main difference was observed regarding metabolism, with upregulated pathways linked to proteolytic activities and the mitochondrial respiratory chain in the highly exposed population. This study improves our understanding of the long-term impact of chronic exposure of soil engineers to pesticide residues.
Afficher plus [+] Moins [-]Assessment of cyanotoxins in water and fish in an African freshwater lagoon (Lagoon Aghien, Ivory Coast) and the application of WHO guidelines Texte intégral
2023
Yao, Eric Kouamé | Ahoutou, Mathias Koffi | Olokotum, Mark | Hamlaoui, Sahima | Lance, Emilie | Marie, Benjamin | Bernard, Cécile | Djeha, Rosine Yao | Quiblier, Catherine | Humbert, Jean-François | Coulibaly, Julien Kalpy | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | In comparison with northern countries, limited data are available on the occurrence and potential toxicity of cyanobacterial blooms in lakes and ponds in sub-Saharan countries. With the aim of enhancing our knowledge on cyanobacteria and their toxins in Africa, we performed a 17-month monitoring of a freshwater ecosystem, Lagoon Aghien (Ivory Coast), which is used for multiple practices by riverine populations and for drinking water production in Abidjan city. The richness and diversity of the cyanobacterial community were high and displayed few variations during the entire survey. The monthly average abundances ranged from 4.1 × 10 4 to 1.8 × 10 5 cell mL −1 , with higher abundances recorded during the dry seasons. Among the five cyanotoxin families analyzed (anatoxin-a, cylindrospermopsin, homoanatoxin, microcystins, saxitoxin), only microcystins (MC) were detected with concentrations ranging from 0 to 0.364 μg L −1 in phytoplankton cells, from 32 to 1092 μg fresh weight (FW) kg −1 in fish intestines, and from 33 to 383 μg FW kg −1 in fish livers. Even if the MC concentrations in water and fish are low, usually below the thresholds defined in WHO guidelines, these data raise the issue of the relevance of these WHO guidelines for sub-Saharan Africa, where local populations are exposed throughout the year to these toxins in multiple ways.
Afficher plus [+] Moins [-]Solar photo-Fenton optimization at neutral pH for microcontaminant removal at pilot plant scale Texte intégral
2023
Hinojosa Guerra, María Mercedes | Oller, Isabel | Quiroga Alonso, José María | Malato, Sixto | Egea-Corbacho Lopera, Agata | Acevedo Merino, Asunción | Tecnologías del Medio Ambiente
The increasing occurrence of micropollutants in natural water bodies has medium to long-term effects on both aquatic life and human health. The aim of this study is to optimize the degradation of two pharmaceutical pollutants of emerging concern: amoxicillin and acetaminophen in aqueous solution at laboratory and pilot scale, by solar photo-Fenton process carried out at neutral pH using ethylenediamine-N,N′-disuccinic acid (EDDS) as a complexing agent to maintain iron in solution. The initial concentration of each compound was set at 1 mg/L dissolved in a simulated effluent from a municipal wastewater treatment plant (MWTP). A factorial experimental design and its surface response analysis were used to optimize the operating parameters to achieve the highest initial degradation rate of each target. The evolution of the degradation process was measured by ultra-performance liquid chromatography (UPLC/UV), obtaining elimination rates above 90% for both contaminants. Statistical study showed the optimum concentrations of Fe(III) at 3 mg/L at an Fe-EDDS ratio of 1:2 and 2.75 mg/L H2O2 for the almost complete removal of the target compounds by solar photo-Fenton process. Validation of the experimental design was successfully carried out with actual MWTP effluent spiked with 100 μg/L of amoxicillin and acetaminophen, each at pilot plant scale.
Afficher plus [+] Moins [-]Improving indoor air quality by using photocatalytic paints. Real scale study at the Technical University of Madrid Texte intégral
2023
Nieto-Márquez Ballesteros, Antonio | Mateo, Manuel de | Barrios López, Andrea | Fuente García-Soto, María del Mar de la | Narros Sierra, Adolfo
People spend more than 90% of their time in indoor spaces, and, therefore, exposure to pollutants is high when inhabiting infrastructures with poor air quality. The pollutants present inside a building come either from inside the building itself (inhabitants, activity developed, etc), or from the outside (traffic, nearby industrial activity, etc). Among air cleaning techniques, building materials that incorporate a photocatalyst are considered to be a promising alternative. Photocatalysis is an Advanced Oxidation Process consisting of the oxidation/mineralization of pollutants in contact with a photocatalytic surface and the presence of UVA and sunlight irradiation. In this work, a photocatalytic paint based on TiO2 and active under indoor illumination conditions (ProCleanAir®, by PROQUICESA S.L.) was tested in a lecture room, evaluating the concentration of NO2 monitored by Palmes passive samplers. There was a decrease in the concentration of pollution after the application of the paint, with the depolluting effect remaining for one year, but also being dependent on atmospheric conditions. The statistical significance of the results was confirmed by t-student analyses.
Afficher plus [+] Moins [-]Physical processes matters! Recommendations for sampling microplastics in estuarine waters based on hydrodynamics Texte intégral
2023
Defontaine, Sophie | Jalon-rojas, Isabel
Monitoring the abundance and characteristics of microplastics in estuarine waters is crucial for understanding the fate of microplastics at the land-sea continuum, and for developing policies and legislation to mitigate associated risks. However, if protocols to monitor microplastic pollution in ocean waters or beach sediments are well established, they may not be adequate for estuarine environments, due to the complex 3D hydrodynamics. In this note, we review and discuss sampling methods and strategies in relation to the main environmental forcing, estuarine hydrodynamics, and their spatio-temporal scales of variability. We propose recommendations about when, where and how to sample microplastics to capture the most representative picture of microplastic pollution. This note opens discussions on the urgent need for standardized methods and protocols to routinely monitor microplastics in estuaries which should, at the same time, be easily adaptable to the different systems to ensure consistency and comparability of data across different studies.
Afficher plus [+] Moins [-]Responses to herbicides of Arctic and temperate microalgae grown under different light intensities Texte intégral
2023
Du, Juan | Izquierdo, Disney | Xu, Hai-feng | Beisner, Beatrix | Lavaud, Johann | Ohlund, Leanne | Sleno, Lekha | Juneau, Philippe
In aquatic ecosystems, microalgae are exposed to light fluctuations at different frequencies due to daily and seasonal changes. Although concentrations of herbicides are lower in Arctic than in temperate regions, atrazine and simazine, are increasingly found in northern aquatic systems because of long-distance aerial dispersal of widespread applications in the south and antifouling biocides used on ships. The toxic effects of atrazine on temperate microalgae are well documented, but very little is known about their effects on Arctic marine microalgae in relation to their temperate counterparts after light adaptation to variable light intensities. We therefore investigated the impacts of atrazine and simazine on photosynthetic activity, PSII energy fluxes, pigment content, photoprotective ability (NPQ), and reactive oxygen species (ROS) content under three light intensities. The goal was to better understand differences in physiological responses to light fluctuations between Arctic and temperate microalgae and to determine how these different characteristics affect their responses to herbicides. The Arctic diatom Chaetoceros showed stronger light adaptation capacity than the Arctic green algae Micromonas. Atrazine and simazine inhibited the growth and photosynthetic electron transport, affected the pigment content, and disturbed the energy balance between light absorption and utilization. As a result, during high light adaptation and in the presence of herbicides, photoprotective pigments were synthesized and NPQ was highly activated. Nevertheless, these protective responses were insufficient to prevent oxidative damage caused by herbicides in both species from both regions, but at different extent depending on the species. Our study demonstrates that light is important in regulating herbicide toxicity in both Arctic and temperate microalgal strains. Moreover, eco-physiological differences in light responses are likely to support changes in the algal community, especially as the Arctic ocean becomes more polluted and bright with continued human impacts.
Afficher plus [+] Moins [-]First Assessment of Rare Earth Element Organotropism in Solea Solea in a Coastal Area: The West Gironde Mud Patch (France) Texte intégral
2023
Labassa, Maëva | Pereto, Clément | Schäfer, Jörg | Hani, Younes M.i. | Baudrimont, Magalie | Bossy, Cécile | Dassié, Émilie P. | Mauffret, Aourell | Deflandre, Bruno | Gremare, Antoine | Coynel, Alexandra
Few studies exist on bioaccumulation and internal distribution of Rare Earth Elements (REEs) in marine fishes. REEs organotropism was determined in common sole (Solea solea) from the West Gironde Mud Patch (WGMP; N-E Atlantic Coast, France). The highest REEs concentrations occurred in liver (213 ± 49.8 µg kg-1 DW) and gills (119 ± 77.5 µg kg-1 DW) followed by kidneys (57.7 ± 25.5 µg kg-1 DW), whereas the lowest levels were in muscles (4.38 ± 1.20 µg kg-1 DW) of Solea solea. No significant age- or sex-related differences were observed. The organotropism varied among groups of REEs. Light and heavy REEs preferentially accumulated in liver and gills, respectively. All considered organs showed different normalized REEs patterns, suggesting differences in internal distribution processes between organs. Further work should address: (1) baseline levels worldwide, and (2) factors controlling uptake and organ-specific bioaccumulation of REEs.
Afficher plus [+] Moins [-]Sources of marine debris for Seychelles and other remote islands in the western Indian Ocean Texte intégral
2023
Vogt-vincent, Noam S. | Burt, April J. | Kaplan, David | Mitarai, Satoshi | Turnbull, Lindsay A. | Johnson, Helen L.
Vast quantities of debris are beaching at remote islands in the western Indian Ocean. We carry out marine dispersal simulations incorporating currents, waves, winds, beaching, and sinking, for both terrestrial and marine sources of debris, to predict where this debris comes from. Our results show that most terrestrial debris beaching at these remote western Indian Ocean islands drifts from Indonesia, India, and Sri Lanka. Debris associated with fisheries and shipping also poses a major risk. Debris accumulation at Seychelles is likely seasonal, peaking during February–April. This pattern is driven by monsoonal winds and may be amplified during positive Indian Ocean Dipole and El-Niño events. Our results underline the vulnerability of small island states to marine plastic pollution, and are a crucial step towards improved management of the issue. The trajectories used in this study are available for download, and our analyses can be rerun under different parameter choices.
Afficher plus [+] Moins [-]