Affiner votre recherche
Résultats 2501-2510 de 4,044
Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China Texte intégral
2016
Zhang, Xiaobo | Li, Xue | Gao, Xubo
Hydrogeochemical analysis, statistical analysis, and geochemical modeling were employed to evaluate the impacts of coal mining activities on karst water chemistry in Niangziguan spring catchment, one of the largest karst springs in Northern China. Significant water quality deterioration was observed along the flow path, evidenced from the increasing sulfate, nitrate, and TDS content in karst water. Karst water samples are Ca-Mg-HCO₃ type in the recharge areas, Ca-Mg-HCO₃-SO₄ type in the coal mining areas, and Ca-Mg-SO₄-HCO₃/HCO₃-SO₄ type in the rural areas and discharge areas. A four-factor principal component analysis (PCA) model is conducted which explains over 82.9 % of the total variation. Factor 1, which explained the largest portion (45.33 %) of the total variance, reveals that coal mining activities and natural water-rock interaction as the primary factors controlling karst water quality. Anthropogenic effects were recognized as the secondary factor with high positive loadings for NO₃⁻ and Cl⁻ in the model. The other two factors are co-precipitation removal of trace elements and silicate mineral dissolution, which explained 20.96 % of the total variance. A two-end mixing modeling was proposed to estimate the percentage of coal wastewater giving on karst water chemistry, based on the groundwater sulfate chemistry constrains rather than sulfur isotopes. Uncertainty of sulfur isotope sources led to an overestimation of coal mining water contribution. According to the results of the modeling, the contribution of coal mining waste on karst water chemistry was quantified to be from 27.05 to 1.11 % which is ca. three times lower than the values suggested using a sulfur isotope method.
Afficher plus [+] Moins [-]A hybrid study of multiple contributors to per capita household CO2 emissions (HCEs) in China Texte intégral
2016
Qu, Jiansheng | Qin, Shanshan | Liu, Lina | Zeng, Jingjing | Bian, Yue
Given the large expenditures by households on goods and services that contribute a large proportion of global CO₂ emissions, increasing attention has been paid to household CO₂ emissions (HCEs). However, compared with industrial CO₂ emissions, efforts devoted to mitigating HCEs are relatively small. A good understanding of the effects of some driving factors (i.e., urbanization rate, per capita GDP, per capita income/disposable income, Engel coefficient, new energy ratio, carbon intensity, and household size) is urgently needed prior to considering policies for reducing HCEs. Given this, in the study, the direct and indirect per capita HCEs were quantified in rural and urban areas of China over the period 2000–2012. Correlation analysis and gray correlation analysis were initially used to identify the prime drivers of per capita HCEs. Our results showed that per capita income/disposable income, per capita GDP, urbanization rate, and household size were the most significantly correlated with per capita HCEs in rural areas. Moreover, the conjoint effects of the potential driving factors on per capita HCEs were determined by performing principal component regression analysis for all cases. Based on the combined analysis strategies, alternative polices were also examined for controlling and mitigating HCEs growth in China.
Afficher plus [+] Moins [-]Degradation of cyflumetofen and formation of its main metabolites in soils and water/sediment systems Texte intégral
2016
Wang, Pingping | Li, Minmin | Liu, Xingang | Xu, Jun | Dong, Fengshou | Wu, Xiaohu | Zheng, Yongquan
Cyflumetofen is a novel benzoyl acetonitrile acaricide without cross-resistance to existing acaricides. In the present study, for the first time, the environmental behaviors of cyflumetofen and the formation of its main metabolites, 2-(trifluoromethyl) benzoic acid (B-1) and 2-(trifluoromethyl) benzamide (B-3), in the four types of soil (black soil, sierozem, krasnozem, and fluvo-aquic soil) and three types of water/sediment systems (Northeast Lake, Hunan paddy field, and Beijng Shangzhuang reservoir) under aerobic and anaerobic conditions were investigated. The degradation dynamics of cyflumetofen followed first-order kinetics. Under aerobic environment, the half-lives of cyflumetofen in black soil, sierozem, krasnozem and fluvo-aquic soil were 11.2, 10.3, 12.4, and 11.4 days. Under water anaerobic conditions, the half-lives were 13.1, 10.8, 13.9, and 12.8 days. The effects of different conditions and soil types on the half-lives of cyflumetofen were studied using a one-way ANOVA test with post hoc comparison (Tukey’s test). It was shown that the differences in black soil, krasnozem, and fluvo-aquic soil were extremely significant difference (p < 0.05) under aerobic and water anaerobic conditions. And there is a strong correlation between half-life and pH. Under aerobic environment, the half-lives of cyflumetofen in Northeast Lake, Hunan paddy field, and Beijng Shangzhuang reservoir were 15.4, 16.9, and 15.1 days. Under anaerobic conditions, they were 16.5, 17.3, and 16.1 days. Analyzing the differences of the half-lives under aerobic and anaerobic conditions, the difference only in Shangzhuang reservoir was extremely significant difference (p < 0.05). In soils, cyflumetofen degraded metabolites B-1 and B-3, from the first day 0.24 % B-1 was generated, while, only very low levels of B-3 generated at the same time. As time increased, B-3 gradually increased, cyflumetofen reduced gradually. Until 100 days, there were about 3.5 % B-1 and B-3 in the soils. In the water/sediment systems, from the first day, it degraded into B-1 in the sediment, and in the water mainly degraded into B-3.
Afficher plus [+] Moins [-]Response of three biofilm-forming benthic microorganisms to Ag nanoparticles and Ag+: the diatom Nitzschia palea, the green alga Uronema confervicolum and the cyanobacteria Leptolyngbya sp Texte intégral
2016
González, A. G. | Fernández-Rojo, L. | Leflaive, J. | Pokrovsky, O. S. | Rols, J-L.
Although the industrial use of nanoparticles has increased over the past decade, the knowledge about their interaction with benthic phototrophic microorganisms in the environment is still limited. This study aims to characterize the toxic effect of ionic Ag⁺ and Ag nanoparticles (citrate-coated silver nanoparticles, AgNPs) in a wide concentration range (from 1 to 1000 μg L⁻¹) and duration of exposure (2, 5 and 14 days) on three biofilm-forming benthic microorganisms: diatom Nitzschia palea, green algae Uronema confervicolum and cyanobacteria Leptolyngbya sp. Ag⁺ has a significant effect on the growth of all three species at low concentrations (1–10 μg L⁻¹), whereas the inhibitory effect of AgNPs was only observed at 1000 μg L⁻¹ and solely after 2 days of exposure. The inhibitory effect of both Ag⁺ and AgNPs decreased in the course of the experiments from 2 to 14 days, which can be explained by the progressive excretion of the exopolysaccharides and dissolved organic carbon by the microorganisms, thus allowing them to alleviate the toxic effects of aqueous silver. The lower impact of AgNPs on cells compared to Ag⁺ can be explained in terms of availability, internalization, reactive oxygen species production, dissolved silver concentration and agglomeration of AgNPs. The duration of exposure to Ag⁺ and AgNPs stress is a fundamental parameter controlling the bioaccumulation and detoxification in benthic phototrophic microorganisms.
Afficher plus [+] Moins [-]Health risk assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan Texte intégral
2016
Nawab, Javed | Li, Gang | K̲h̲ān, Sardār | Sher, Hassan | Aamir, Muhammad | Shamshad, Isha | Khan, Anwarzeb | Khan, Muhammad Amjad
This study aimed to investigate the potential health risk associated with toxic metals in contaminated foodstuffs (fruits, vegetables, and cereals) collected from various agriculture fields present in chromite mining-affected areas of mafic and ultramafic terrains (northern Pakistan). The concentrations of Cr, Ni, Zn, Cd, and Pb were quantified in both soil and food samples. The soil samples were highly contaminated with Cr (320 mg/kg), Ni (108 mg/kg), and Cd (2.55 mg/kg), which exceeded their respective safe limits set by FAO/WHO. Heavy metal concentrations in soil were found in the order of Cr>Ni>Pb>Zn>Cd and showed significantly (p < 0.001) higher concentrations as compared to reference soil. The integrated pollution load index (PLI) value was observed greater than three indicating high level of contamination in the study area. The concentrations of Cr (1.80–6.99 mg/kg) and Cd (0.21–0.90 mg/kg) in foodstuffs exceeded their safe limits, while Zn, Pb, and Ni concentrations were observed within their safe limits. In all foodstuffs, the selected heavy metal concentrations were accumulated significantly (p < 0.001) higher as compared to the reference, while some heavy metals were observed higher but not significant like Zn in pear, persimmon, white mulberry, and date-plum; Cd in pear, fig and white mulberry; and Pb in walnut, fig, and pumpkin. The health risk assessment revealed no potential risk for both adults and children for the majority of heavy metals, except Cd, which showed health risk index (HRI) >1 for children and can pose potential health threats for local inhabitants. Graphical Abstract Heavy metals released from chromite mining lead to soil and foodstuff contamination and human health risk
Afficher plus [+] Moins [-]Characteristics of simultaneous ammonium and phosphate adsorption from hydrolysis urine onto natural loess Texte intégral
2016
Jiang, Qishao | Wang, Xiaochang | Yang, Shengjiong | Shi, Honglei
Nutrient recovery from human urine is a promising pretreatment of domestic wastewater and provides a sustainable recyclability of N and P. In this study, batch experiments were conducted to identify the characteristics of natural loess (NL) for the adsorption and recovery of ammonium and phosphate from hydrolysis urine (HU). The adsorption mechanisms, the adsorption kinetics and isotherms, as well as the major influencing factors, such as pH and temperature, were investigated. Results revealed that adsorption of ammonium occurred by means of ion exchange and molecule adsorption with the ≡Si–OH groups, while phosphate adsorption was based on the calcium phosphate precipitation reaction and formation of inner-sphere complexes with ≡ M–OH groups. The adsorption processes of ammonium and phosphate were well described by the pseudo-second-order kinetic model and the Freundlich isotherm model. Adsorption of phosphate was endothermic, while ammonium adsorption was exothermic. Furthermore, the maximum ammonium and phosphate adsorption capacities of NL was 23.24 mg N g–¹ and 4.01 mg P g–¹ at an initial pH of 9 and 10, respectively. Results demonstrated that nutrient-adsorbed NL used as compound fertilizer or conventional fertilizer superaddition was feasible for its high contents of N and P as well as its environmental friendliness.
Afficher plus [+] Moins [-]Influence of environmental factors on the phosphorus adsorption of lanthanum-modified bentonite in eutrophic water and sediment Texte intégral
2016
Liu, SheJiang | Li, Jie | Yang, YongKui | Wang, Juan | Ding, Hui
Lanthanum-modified bentonite has potential for wide application in eutrophication control. We investigated P adsorption on a lanthanum-modified bentonite by analysis of adsorption kinetics, equilibrium, and the effect of environmental factors. P adsorption closely followed the pseudo-second-order kinetic model, and the isotherm was well described by the Langmuir model. This adsorbent could effectively immobilize P into the sediment, but the adsorption process was strongly dependent on pH, anions, and low molecular weight organic acids (LMWOAs). P adsorption increased with increasing pH from 0.52 mg P/g at pH 3.0 to 0.93 mg P/g at pH 7.0 with no adsorption at pH 11. P adsorption was strongly inhibited in the presence of anions and three LMWOAs, with P even re-released at high concentrations. These environmental factors should be given significant attention when considering the application of lanthanum-modified bentonite in eutrophication control.
Afficher plus [+] Moins [-]Contaminant transport in the sub-surface soil of an uncontrolled landfill site in China: site investigation and two-dimensional numerical analysis Texte intégral
2016
Xie, Haijian | Chen, Yunmin | Thomas, H. R. (Hywel R.) | Sedighi, Majid | Masum, Shakil A. | Ran, Qihua
A field investigation of contaminant transport beneath and around an uncontrolled landfill site in Huainan in China is presented in this paper. The research aimed at studying the migration of some chemicals present in the landfill leachate into the surrounding clayey soils after 17 years of landfill operation. The concentrations of chloride and sodium ions in the pore water of soil samples collected at depths up to 15 m were obtained through an extensive site investigation. The contents of organic matter in the soil samples were also determined. A two-dimensional numerical study of the reactive transport of sodium and chloride ion in the soil strata beneath and outside the landfill is also presented. The numerical modelling approach adopted is based on finite element/finite difference techniques. The domain size of approximately 300 × 30 m has been analysed and major chemical transport parameters/mechanisms are established via a series of calibration exercises. Numerical simulations were then performed to predict the long-term behaviour of the landfill in relation to the chemicals studied. The lateral migration distance of the chloride ions was more than 40 m which indicates that the advection and mechanical dispersion are the dominant mechanism controlling the contaminant transport at this site. The results obtained from the analysis of chloride and sodium migration also indicated a non-uniform advective flow regime of ions with depth, which were localised in the first few metres of the soil beneath the disposal site. The results of long-term simulations of contaminant transport indicated that the concentrations of ions can be 10 to 30 times larger than that related to the allowable limit of concentration values. The results of this study may be of application and interest in the assessment of potential groundwater and soil contamination at this site with a late Pleistocene clayey soil. The obtained transport properties of the soils and the contaminant transport mechanisms can also be used for the design of engineered barriers for the control of the long-term pollution of the site.
Afficher plus [+] Moins [-]Traffic tracers in a suburban location in northern Spain: relationship between carbonaceous fraction and metals Texte intégral
2016
Megido, L. | Negral, L. | Castrillón, L. | Marañón, E. | Fernández-Nava, Y. | Suárez-Peña, B.
PM10 and black smoke were monitored at a suburban sampling station located in the northern Spanish city of Gijón. Thirty-two metals and total carbon (TC) (i.e., organic carbon (OC) and elemental carbon (EC)) were analyzed over a year. The study of air-mass origin based on 5-day back trajectories was carried out to assess its influence on the recovery data. Different strategies were implemented to infer the influence of traffic in the area. On average, TC accounted for 29 % of the PM10 fraction, with OC forming 77 % of this TC. The influence of traffic was clearly reduced during intense Atlantic advection episodes, when OC and EC decreased up to 0.39 and 0.22 μg C/m³, respectively. In contrast, the highest values were reported during regional episodes, exceeding 10 μg C/m³ of OC and 2 μg C/m³ of EC. The correlation between EC and OC was found to notably improve when considering the days with high traffic flow (from R ² = 0.46 to R ² = 0.74). This pattern was also reproduced by black smoke and EC (from R ² = 0.49 to R ² = 0.59). Cu and Sn were found to be reliable traffic tracers given their high dependence on EC (R ² = 0.82 and R ² = 0.79, respectively). Nevertheless, Sn, Ba, and Sb showed a better correlation with Cu than EC, suggesting a common origin. In the case of Sn, R ² improved from 0.79 to 0.91. The Cu/Sb ratio had a mean value of 6.6 which agrees with diagnostic criterions for brake wear particles. The relationships and ratios between EC, Cu, Sb, Sn, Ba, and Bi pointed out to non-exhaust emissions, playing a significant role in the chemical composition of PM10. Brake wear was presented as the most likely origin for Cu, Sb, and Sn.
Afficher plus [+] Moins [-]Antioxidative response of olive to air emissions from tire burning under various zinc nutritional treatments Texte intégral
2016
Hatami, Ashkan | Khoshgoftarmanesh, Amir Hossein
Uniform 2-year old seedlings of a commercial olive cultivar (Olea europaea L., cv. Mahzam) were exposed or unexposed to the air pollution from the controlled burning of waste tires. The plants were supplied with zinc sulfate (ZnSO₄) or synthesized Zn(Glycine)₂ (Zn-Gly) or unsupplied with Zn. Exposure to air pollution resulted in oxidative damage to the olive, as indicated by the higher production of malondialdehyde (MDA). Supplement with Zn partly alleviated oxidative damage induced by the air emissions on the olive. Leaf concentration of MDA was higher at the active period of tire burning than that of the inactive one. Exposure to the emissions from tire burning significantly increased leaf ascorbate peroxidase (APX) activity. Supplement with Zn increased APX activity in plants exposed to the air pollution. According to the results, Zn nutrition was effective in alleviating oxidative stress induced by air pollution on the olive. APX seemed to play a significant role in alleviating oxidative damages induced by air emissions from tire burning on the olive; however, the role of other antioxidant enzymes should be addressed in future studies.
Afficher plus [+] Moins [-]