Affiner votre recherche
Résultats 2521-2530 de 4,033
Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community
2016
Fu, Xiaoyong | Cui, Guangyu | Huang, Kui | Chen, Xuemin | Li, Fusheng | Zhang, Xiaoyu | Li, Fei
In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.
Afficher plus [+] Moins [-]Spatial and temporal characteristics of air quality and air pollutants in 2013 in Beijing
2016
Yan, Shujun | Cao, Hui | Chen, Ying | Wu, Chengzhen | Hong, Tao | Fan, Hailan
Air pollution has become an ever more critical issue in Beijing in more recent years. In this study, we use the air quality index (AQI), corresponding primary pollutant types and meteorological data which are collected at 16 monitoring stations in Beijing between January 2013 and December, 2013 studying the spatial and temporal variations of air quality and air pollutants. The results show that PM₂.₅ was the most serious pollutant, followed by O₃. The average PM₂.₅ mass concentration was 119.5 ± 13.8 μg m⁻³ in Beijing. In addition, the air quality varies across different seasons. More specifically, winter season showed the worst air quality. Moreover, while particulate matter (PM₂.₅ and PM₁₀) concentrations were relatively higher in the spring and winter seasons, gaseous pollutants (O₃ and NO₂) were more serious in the summer and autumn. In terms of spatial heterogeneity, the findings showed that AQI and PM₂.₅ concentrations were higher in south and lower in the north of the city, and the O₃ showed exactly a pattern with the opposite direction—higher in the north and lower in the south. NO₂ was found to have a greater impact on the central region compared with that in other regions. Furthermore, PM₂.₅ was found to be positively correlated with the relative humidity, but negatively correlated with wind speed and atmospheric pressure (P < 0.01). However, the dominant meteorological factors that influence the PM₂.₅ concentrations varied in different seasons. The results in this paper provide additional information for the effective control of the air pollution in Beijing.
Afficher plus [+] Moins [-]Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions
2016
Case, Sean D. C. | Gómez-Muñoz, Beatriz | Magid, Jakob | Jensen, Lars Stoumann
Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be of importance for the value of the biosolids when used to fertilise crops. We sourced AD biosolids from a Danish waste water treatment plant (WWTP) and dried it in the laboratory at 70, 130, 190 or 250 °C to >95 % dry matter content. Also, we sourced biosolids from the WWTP dried using its in-house thermal drying process (input temperature 95 °C, thermal fluid circuit temperature 200 °C, 95 % dry matter content). The drying process reduced the ammonium content of the biosolids and reduced it further at higher drying temperatures. These findings were attributed to ammonia volatilisation. The percentage of mineralisable organic N fraction (min-N) in the biosolids, and nitrous oxide (N₂O) and carbon dioxide (CO₂) production were analysed 120 days after addition to soil. When incubated at soil field capacity (pF 2), none of the dried biosolids had a greater min-N than the AD biosolids (46.4 %). Min-N was lowest in biosolids dried at higher temperatures (e.g. 19.3 % at 250 °C vs 35.4 % at 70 °C). Considering only the dried biosolids, min-N was greater in WWTP-dried biosolids (50.5 %) than all of the laboratory-dried biosolids with the exception of the 70 °C-dried biosolids. Biosolid carbon mineralisation (CO₂ release) and N₂O production was also the lowest in treatments of the highest drying temperature, suggesting that this material was more recalcitrant. Overall, thermal drying temperature had a significant influence on N availability from the AD biosolids, but drying did not improve the N availability of these biosolids in any case.
Afficher plus [+] Moins [-]Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment
2016
Song, Yue | Ammami, Mohamed-Tahar | Benamar, Ahmed | Mezazigh, Salim | Wang, Huaqing
In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L⁻¹), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal–chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.
Afficher plus [+] Moins [-]Aerobic debromination of BDE-209 by Rhodococcus sp. coupled with zerovalent iron/activated carbon
2016
Liu, Lili | Zhang, Yacong | Liu, Ruihong | Wang, Zhiping | Xu, Feng | Chen, Yilun | Lin, Kuangfei
In this study, an aerobic strain identified as Rhodococcus sp. was isolated from the sediment of a typical electronic waste disassemble site, Taizhou, China. This strain could use BDE-209 as the sole carbon and energy source and degrade 65.1 % of BDE-209 (initial concentration being 50 mg/L) within 144 h. To explore the BDE-209 degradation properties of this strain with the co-existed electronic donor, zerovalent iron/activated carbon (ZVI/AC) was introduced to build a microbial-chemical coupling system, which was found to promote the degradation of BDE-209 slightly (74.7 % in 144 h). Moreover, the debromination products in both of the batch experiments were determined with GC/MS, which showed that lower brominated PBDE congeners were produced almost in order of the number of bromine ions, ranged from nona- to di-BDEs. In addition, the possible debromination pathways of BDE-209 for each system were proposed respectively, which confirmed the microbial activity of BDE-209 debromination. Since some of the lower-brominated BDE congeners are much toxic than BDE-209, these microbial activities might bring potential hazards to the environment with BDE-209 contamination. It is the first time to investigate the transformation of BDE-209 with microbial-chemical coupling system, which is universal in the nature, thus suggesting that the ecological safety of environment exposed to PBDEs should be focused in the future.
Afficher plus [+] Moins [-]Molecular characterization of microbial communities and quantification of Mycobacterium immunogenum in metal removal fluids and their associated biofilms
2016
Wu, Jianfeng | Franzblau, Alfred | Xi, Chuanwu
A number of human health effects have been associated with exposure to metal removal fluids (MRFs). Multiple lines of research suggest that a newly identified organism, Mycobacterium immunogenum (MI), appears to have an etiologic role in hypersensitivity pneumonitis (HP) in case of MRFs exposed workers. However, our knowledge of this organism, other possible causative agents (e.g., Pseudomonads), and the microbial ecology of MRFs in general, is limited. In this study, culture-based methods and small subunit ribosomal RNA gene clone library approach were used to characterize microbial communities in MRF bulk fluid and associated biofilm samples collected from fluid systems in an automobile engine plant. PCR amplification data using universal primers indicate that all samples had bacterial and fungal contaminated. Five among 15 samples formed colonies on the Mycobacteria agar 7H9 suggesting the likely presence of Mycobacteria in these five samples. This observation was confirmed with PCR amplification of 16S rRNA gene fragment using Mycobacteria specific primers. Two additional samples, Biofilm-1 and Biofilm-3, were positive in PCR amplification for Mycobacteria, yet no colonies formed on the 7H9 cultivation agar plates. Real-time PCR was used to quantify the abundance of M. immunogenum in these samples, and the data showed that the copies of M. immunogenum 16S rRNA gene in the samples ranges from 4.33 × 10⁴ copy/ml to 4.61 × 10⁷ copy/ml. Clone library analysis revealed that Paecilomyces sp. and Acremonium sp. and Acremonium-like were dominant fungi in MRF samples. Various bacterial species from the major phylum of proteobacteria were found and Pseudomonas is the dominant bacterial genus in these samples. Mycobacteria (more specifically MI) were found in all biofilm samples, including biofilms collected from inside the MRF systems and from adjacent environmental surfaces, suggesting that biofilms may play an important role in microbial ecology in MRFs. Biofilms may provide a shield or sheltered microenvironment for the growth and/or colonization of Mycobacteria in MRFs.
Afficher plus [+] Moins [-]Effect of operational and design parameters on performance of pilot-scale horizontal subsurface flow constructed wetlands treating university campus wastewater
2016
Papaevangelou, Vassiliki | Gikas, Georgios D. | Tsihrintzis, Vassilios A.
Three horizontal subsurface flow (HSF) pilot-scale constructed wetland (CW) units operated for 3 years treating municipal wastewater originating from a university campus. The main objective of the study was the evaluation of the performance of these systems under several operational, design, and climatic conditions. Several parameters and factors were investigated, including the influence of temperature, vegetation, and hydraulic residence time. The results were compared to those of a previous study conducted in the same pilot-scale units and under the same operational conditions where synthetic municipal wastewater was used. Results show the satisfying overall performance of the CW units. Performance seems to be influenced by vegetation, temperature, and hydraulic residence time (HRT). The planted units produced better results than the unplanted one while, generally, all units operated better under warmer conditions. In addition, longer HRTs contributed to higher removal efficiencies. Finally, the systems showed higher removal efficiencies in the previous study (synthetic wastewater) regarding organic matter removal, while for the other pollutants, the present study (real wastewater) showed higher or comparable performance in most cases and especially in the planted units. The study also shows the overall good, continuous, and long-term operation of CW systems, since these systems operate for about 13 years.
Afficher plus [+] Moins [-]Shifts in indigenous microbial communities during the anaerobic degradation of pentachlorophenol in upland and paddy soils from southern China
2016
Chen, Yating | Tao, Liang | Wu, Ke | Wang, Yongkui
Pentachlorophenol (PCP) is a common persistent pesticide in soil that has generated a significant environmental problem worldwide. Therefore, anaerobic degradation of PCP by the soil indigenous microbial community has gained increasing attention. However, little information is available concerning the functional microorganisms and the potential shifts in the microbial community associated with PCP degradation. In this study, we conducted a set of experiments to determine which components of the indigenous microbial community were capable of degrading PCP in soils of two land use types (upland and paddy soils) in southern China. Our results showed that the PCP degradation rate was significantly higher in paddy soils than that in upland soils. 16S ribosomal RNA (rRNA) high-throughput sequencing revealed significant differences in microbial taxonomic composition between the soil with PCP and blank (soil without PCP) with Acinetobacter, Clostridium, Coprococcus, Oxobacter, and Sedimentibacter dominating the PCP-affected communities. Acinetobacter was also apparently enriched in the paddy soils with PCP (up to 52.2 %) indicated this genus is likely to play an important role in PCP degradation. Additionally, the Fe(III)-reducing bacteria Clostridium may also be involved in PCP degradation. Our data further revealed hitherto unknown metabolisms of potential PCP degradation by microorganisms including Coprococcus, Oxobacter, and Ruminiclostridium. Overall, these findings indicated that land use types may affect the PCP anaerobic degradation rate via the activities of indigenous bacterial populations and extend our knowledge of the bacterial populations responsible for PCP degradation.
Afficher plus [+] Moins [-]Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation
2016
Prokop, Zbyněk | Nečasová, Anežka | Klánová, Jana | Čupr, Pavel
A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants.
Afficher plus [+] Moins [-]Diamondoid naphthenic acids cause in vivo genetic damage in gills and haemocytes of marine mussels
2016
Dissanayake, Awantha | Scarlett, Alan G. | Jha, Awadhesh N.
Diamondoids are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton approaching that of diamond. These ‘nano-diamonds’ are used in a range of industries including nanotechnologies and biomedicine. Diamondoids were thought to be highly resistant to degradation, but their presumed degradation acid products have now been found in oil sands process-affected waters (OSPW) and numerous crude oils. Recently, a diamondoid-related structure, 3-noradamantane carboxylic acid, was reported to cause genetic damage in trout hepatocytes under in vitro conditions. This particular compound has never been reported in the environment but led us to hypothesise that other more environmentally relevant diamondoid acids could also be genotoxic. We carried out in vivo exposures (3 days, semi-static) of marine mussels to two environmentally relevant diamondoid acids, 1-adamantane carboxylic acid and 3,5-dimethyladamantane carboxylic acid plus 3-noradamantane carboxylic acid with genotoxic damage assessed using the Comet assay. An initial screening test confirmed that these acids displayed varying degrees of genotoxicity to haemocytes (increased DNA damage above that of controls) when exposed in vivo to a concentration of 30 μmol L⁻¹. In a further test focused on 1-adamantane carboxylic acid with varying concentrations (0.6, 6 and 30 μmol L⁻¹), significant (P < 0.05 %) DNA damage was observed in different target cells (viz. gills and haemocytes) at 0.6 μmol L⁻¹. Such a level of induced genetic damage was similar to that observed following exposure to a known genotoxin, benzo(a)pyrene (exposure concentration, 0.8 μmol L⁻¹). These findings may have implications for a range of worldwide industries including oil extraction, nanotechnology and biomedicine.
Afficher plus [+] Moins [-]