Affiner votre recherche
Résultats 2531-2540 de 4,043
Possible protective role of elderberry fruit lyophilizate against selected effects of cadmium and lead intoxication in Wistar rats Texte intégral
2016
Kopeć, Aneta | Sikora, Elżbieta | Piątkowska, Ewa | Borczak, Barbara | Czech, Tomasz
Possible protective role of elderberry fruit lyophilizate against selected effects of cadmium and lead intoxication in Wistar rats Texte intégral
2016
Kopeć, Aneta | Sikora, Elżbieta | Piątkowska, Ewa | Borczak, Barbara | Czech, Tomasz
The objective of this study was the investigation whether the administration of the elderberry fruit lyophilizate under exposure to cadmium(Cd) and (Pb) lead may protect against some effects of their toxic action in Wistar rats. Rats were fed with diets containing Cd (Cd 0.025 mg/kg b.m.) or Pb (Pb 0.025 mg /kg b.m.) with the addition of the freeze-dried elderberry fruits (BEF) in the amount of 5 %. BEF added to the diet with Cd significantly decreased the activity of AST and ALT compared to the rats fed with the control diet with Cd (C + Cd). Activity of glutathione peroxidase was significantly higher in the blood of rats fed with BEF diet compared with animals fed with BEF + Cd, BEF + Pb, and C + Pb diets. Addition of BEF to the diets with Cd or Pb significantly decreased the uric acid concentration compared to the level of this parameter in the serum of animals fed with control diets containing Cd or Pb. The level of the Cd significantly decreased in the livers of rodents fed with BEF + Cd diet as compared to the concentration of this metal in the livers of rats fed with C + Cd diet. Elderberry fruit lyophilizate did not protect against the increased concentration of Cd or Pb in kidneys and bones of experimental rats; however, it improved the function of livers and kidneys, especially of rats intoxicated with Cd.
Afficher plus [+] Moins [-]Possible protective role of elderberry fruit lyophilizate against selected effects of cadmium and lead intoxication in Wistar rats Texte intégral
Aneta Kopeć | Elżbieta Sikora | Ewa Piątkowska | Barbara Borczak | Tomasz Czech
The objective of this study was the investigation whether the administration of the elderberry fruit lyophilizate under exposure to cadmium(Cd) and (Pb) lead may protect against some effects of their toxic action in Wistar rats. Rats were fed with diets containing Cd (Cd 0.025 mg/kg b.m.) or Pb (Pb 0.025 mg /kg b.m.) with the addition of the freeze-dried elderberry fruits (BEF) in the amount of 5 %. BEF added to the diet with Cd significantly decreased the activity of AST and ALT compared to the rats fed with the control diet with Cd (C + Cd). Activity of glutathione peroxidase was significantly higher in the blood of rats fed with BEF diet compared with animals fed with BEF + Cd, BEF + Pb, and C + Pb diets. Addition of BEF to the diets with Cd or Pb significantly decreased the uric acid concentration compared to the level of this parameter in the serum of animals fed with control diets containing Cd or Pb. The level of the Cd significantly decreased in the livers of rodents fed with BEF + Cd diet as compared to the concentration of this metal in the livers of rats fed with C + Cd diet. Elderberry fruit lyophilizate did not protect against the increased concentration of Cd or Pb in kidneys and bones of experimental rats; however, it improved the function of livers and kidneys, especially of rats intoxicated with Cd. | Antioxidants; Cadmium; Elderberry fruit lyophilizate; Lead; Rats | 30 | 8837-8848 | 9
Afficher plus [+] Moins [-]Expression of copper-resistance genes in microbial communities under copper stress and oxic/anoxic conditions Texte intégral
2016
Besaury, Ludovic | Pawlak, Barbara | Quillet, Laurent
Microorganisms have developed copper-resistance mechanisms in order to survive in contaminated environments. The abundance and expression of the copper-resistance genes cusA and copA, encoding respectively for a Resistance Cell Nodulation protein and for a P-type ATP-ase pump, was assessed along a gradient of copper concentration in microcosms prepared from Seine estuary mudflat sediment. We demonstrated that the abundance of copA and cusA genes decreased with the increase of copper concentration and that cusA gene was up to ten times higher than the copA gene. Only the copA gene was expressed in both oxic and anoxic conditions. The abundance and activity of the microbial community remained constant whatever the concentrations of copper along the gradient. The molecular phylogeny of the two copper-resistance genes was studied and revealed that the increase of copper increased the diversity of copA and cusA gene sequences.
Afficher plus [+] Moins [-]Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core Texte intégral
2016
Kaci, Assia | Petit, Fabienne | Fournier, Matthieu | Cécillon, Sébastien | Boust, Dominique | Lesueur, Patrick | Berthe, Thierry
Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core Texte intégral
2016
Kaci, Assia | Petit, Fabienne | Fournier, Matthieu | Cécillon, Sébastien | Boust, Dominique | Lesueur, Patrick | Berthe, Thierry
In estuarine ecosystems, metallic and organic contaminants are mainly associated with fine grain sediments which settle on mudflats. Over time, the layers of sediment accumulate and are then transformed by diagenetic processes mainly controlled by microbial activity, recording the history of the estuary’s chemical contamination. In an environment of this specific type, we investigated the evolution of the chemical contamination and the structure of both total and active microbial communities, based on PhyloChip analysis of a 4.6-m core corresponding to a 40-year sedimentary record. While the archaeal abundance remained constant along the core, a decrease by one order of magnitude in the bacterial abundance was observed with depth. Both total and active microbial communities were dominated by Proteobacteria, Actinobacteria, and Firmicutes in all sediment samples. Among Proteobacteria, alpha-Proteobacteria dominated both total (from 37 to 60 %) and metabolically active (from 19.7 to 34.6 %) communities, including the Rhizobiales, Rhodobacter, Caulobacterales, and Sphingomonadales orders. Co-inertia analysis revealed a relationship between polycyclic aromatic hydrocarbons, zinc and some polychlorobiphenyls concentrations, and the structure of total and active microbial communities in the oldest and most contaminated sediments (from 1970 to 1975), suggesting that long-term exposure to chemicals shaped the structure of the microbial community.
Afficher plus [+] Moins [-]Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core Texte intégral
2016
Kaci, Assia | Petit, Fabienne | Fournier, Matthieu | Cecillon, Sébastien | Boust, Dominique | Lesueur, Patrick | Berthe, Thierry | Morphodynamique Continentale et Côtière (M2C) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS) | Ampère, Département Bioingénierie (BioIng) ; Ampère (AMPERE) ; École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut de Radioprotection et de Sûreté Nucléaire (IRSN)
International audience | In estuarine ecosystems, metallic and organic contaminants are mainly associated with fine grain sediments which settle on mudflats. Over time, the layers of sediment accumulate and are then transformed by diagenetic processes mainly controlled by microbial activity, recording the history of the estuary's chemical contamination. In an environment of this specific type, we investigated the evolution of the chemical contamination and the structure of both total and active microbial communities, based on PhyloChip analysis of a 4.6-m core corresponding to a 40-year sedimentary record. While the archaeal abundance remained constant along the core, a decrease by one order of magnitude in the bacterial abundance was observed with depth. Both total and active microbial communities were dominated by Proteobacteria, Actinobacteria, and Firmicutes in all sediment samples. Among Proteobacteria, alpha-Proteobacteria dominated both total (from 37 to 60 %) and metabolically active (from 19.7 to 34.6 %) communities, including the Rhizobiales, Rhodobacter, Caulobacterales, and Sphingomonadales orders. Co-inertia analysis revealed a relationship between polycyclic aromatic hydrocarbons, zinc and some polychlorobiphenyls concentrations, and the structure of total and active microbial communities in the oldest and most contaminated sediments (from 1970 to 1975), suggesting that long-term exposure to chemicals shaped the structure of the microbial community.
Afficher plus [+] Moins [-]Characterization and valorization of biomass ashes Texte intégral
2016
Trivedi, Nikhilesh S. | Mandavgane, Sachin A. | Mehetre, Sayaji | Kulkarni, B. D.
In India, farming is the primary source of income for many families. Following each harvest, a huge amount of biomass is generated. These are generally discarded as “agrowaste,” but recent reports have indicated several beneficial uses for these biomasses and their ashes. However, before the utilization of biomass ashes (BMAs), their chemical and physical properties need to be investigated (characterized) so as to utilize their potential benefit to the fullest. In this paper, eight different biomass ashes (soybean plant ash, mustard plant ash, maize ash, groundnut plant ash, cotton plant ash, wheat plant ash, pigeon peas ash, and groundnut shell ash) were characterized, and their chemical properties are discussed. Surface chemical composition analysis, proximate analysis, and ultimate analysis were performed on all BMA samples, and properties such as porosity, particle density, bulk density, point of zero charge, BET surface area, water-absorption capacity, and bulk parameters such as surface pH and surface charges were determined. BMAs were characterized by SEM and FTIR. The surface areas of biomass ashes vary from 1.9 to 46 m²/g, and point of zero charge for all BMAs exceed 9.8, which confirmed the alkaline nature of these samples. Based on the chemical composition, BMAs are categorized into four types (S, C, K, and CK), and their utilization is proposed based on the type. BMAs find applications in agriculture and construction industries; glass, rubber, and zeolite manufacturing; and in adsorption (as a source of silica/zeolites). The paper also discusses the research challenges and opportunities in utilization of BMAs.
Afficher plus [+] Moins [-]Export product diversification and the environmental Kuznets curve: evidence from Turkey Texte intégral
2016
Gözgor, Giray | Can, Muhlis
Countries try to stabilize the demand for energy on one hand and sustain economic growth on the other, but the worsening global warming and climate change problems have put pressure on them. This paper estimates the environmental Kuznets curve over the period 1971–2010 in Turkey both in the short and the long run. For this purpose, the unit root test with structural breaks and the cointegration analysis with multiple endogenous structural breaks are used. The effects of energy consumption and export product diversification on CO₂ emissions are also controlled in the dynamic empirical models. It is observed that the environmental Kuznets curve hypothesis is valid in Turkey in both the short run and the long run. The positive effect on energy consumption on CO₂ emissions is also obtained in the long run. In addition, it is found that a greater product diversification of exports yields higher CO₂ emissions in the long run. Inferences and policy implications are also discussed.
Afficher plus [+] Moins [-]Environmental implications of high metal content in soils of a titanium mining zone in Kenya Texte intégral
2016
Maina, David M. | Ndirangu, Douglas M. | Mangala, Michael M. | Boman, Johan | Shepherd, Keith | Gatari, Michael J.
Mining activities contribute to an increase of specific metal contaminants in soils. This may adversely affect plant life and consequently impact on animal and human health. The objective of this study was to obtain the background metal concentrations in soils around the titanium mining in Kwale County for monitoring its environmental impacts. Forty samples were obtained with half from topsoils and the other from subsoils. X-ray fluorescence spectrometry was used to determine the metal content of the soil samples. High concentrations of Ti, Mn, Fe, and Zr were observed where Ti concentrations ranged from 0.47 to 2.8 %; Mn 0.02 to 3.1 %; Fe 0.89 to 3.1 %; and Zr 0.05 to 0.85 %. Using ratios of elemental concentrations in topsoil to subsoil method and enrichment factors concept, the metals were observed to be of geogenic origin with no anthropogenic input. The high concentrations of Mn and Fe may increase their concentration levels in the surrounding agricultural lands through deposition, thereby causing contamination on the land and the cultivated food crops. The latter can cause adverse human health effects. In addition, titanium mining will produce tailings containing low-level titanium concentrations, which will require proper disposal to avoid increasing titanium concentrations in the soils of the region since it has been observed to be phytotoxic to plants at high concentrations. The results of this study will serve as reference while monitoring the environmental impact by the titanium mining activities.
Afficher plus [+] Moins [-]Genotoxicity assessment of the Danube River using tissues of freshwater bream (Abramis brama) Texte intégral
2016
Kostić, Jovana | Kolarević, Stoimir | Kračun-Kolarević, Margareta | Aborgiba, Mustafa | Gačić, Zoran | Lenhardt, Mirjana | Vuković-Gačić, Branka
This study examines the use of freshwater bream (Abramis brama) as a sentinel organism for genotoxicity assessment of the Danube River using the comet assay. Sampling of bream was performed during February, April, August, and November in 2014 to assess seasonal variation of DNA damage level as a response to genotoxicity in annual cycle. Additionally, concentrations of fecal coliforms and enterococci were analyzed and they indicated a critical to strong level of fecal pollution on investigated locality during annual cycle. Comet assay was performed on blood, liver, and gill cells of bream. DNA damage level was expressed using tail intensity (TI %), Olive tail moment (OTM), and tail length (TL pix). According to TI and OTM, all three tissues had the highest level of DNA damage in August. The lowest level of DNA damage in liver was measured during February, in blood during November, and in gills during April. According to TL, gills had the highest level of DNA damage in February, and liver cells had the lowest level of damage during April. Multiple correspondence analysis (MCA) showed that DNA damage in blood cells is under the strong influence of variations in NO₂, NO₃ ⁻, NH₄ ⁺ levels and also the variation in temperature and oxygen levels. DNA damage in liver cells is highly associated with the variations of Mn, Fe, Cu, Zn, and PO₄ ³⁻ levels. DNA damage in gill cells is strongly affected by the variations of As, Cd, Pb, Cr, and COD (Mn) levels. Freshwater bream is shown to be a potentially good indicator organism in genotoxic potential field studies.
Afficher plus [+] Moins [-]Trace metals in surface sediments of the Taiwan Strait: geochemical characteristics and environmental indication Texte intégral
2016
Gao, Xuelu | Zhou, Fengxia | Lui, Hon-Kit | Lou, Jiann-Yuh | Chen, Chen-Tung Arthur | Zhuang, Wen
The concentration and geochemical fractionation of six trace metals related with environmental quality assessment, namely Cd, Cr, Cu, Ni, Pb, and Zn, in 30 surface sediments from both inshore and offshore areas of the Taiwan Strait were measured to investigate their distribution characteristics, evaluate their potential mobility, and assess their pollution status. The geoaccumulation index results indicated that, on average, the studied metals presented an order of Cd > Pb > Ni > Zn > Cu > Cr and were practically in uncontaminated status except Cd. The results of the sequential extraction analysis indicated that, on average, the studied metals were mostly accumulated in residual fraction except Cd whose concentration was the highest in the acid soluble fraction presenting a high risk to the environment, and their mobility decreased in the sequence of Cd > Pb > Ni > Cu > Zn > Cr. Based on the mean probable effect level quotients, the combination of the studied metals had an 8 % probability of being toxic at two sampling sites and had a 21 % probability of being toxic at the rest of sites. The spatial distribution of the studied metals in total concentrations and different geochemical fractions corroborated the previous findings about the possible sediment transportation routes in and around the Taiwan Strait.
Afficher plus [+] Moins [-]Adsorption efficiency of poly(ethylene glycol)/chitosan/CNT blends for maltene fraction separation Texte intégral
2016
Abdeen, Z.
Poly(ethylene glycol)/chitosan (PEG/CH) hydrogel and its composite containing carbon nanotubes (PEG/CH/CNTs) were prepared using a simple blending method. The effect of the PEG/CH ratio on the water uptake was studied and optimized. And the prepared hydrogels were characterized by XRD, SEM, and FTIR. Also, the ability of each of the prepared hydrogels to adsorb and separate maltene fractions was compared using saturates, aromatics, resins, and asphaltenes (SARA) method. From the results, it was noticed that the adsorption capacity and separation ability of PEG/CH/CNT are better than that of PEG/CH. But the released amount of alkane fractions using these hydrogels is higher than that in the reference (without using hydrogel). This may be attributed to degradation of maltene residue to alkanes and that degradation is better by using PEG/CH adsorbent than PEG/CH/CNT. Although, from a practical point of view, where PEG/CH/CNT hydrogel may be favorable, it has an acceptable ability to adsorb and separate the maltene fractions.
Afficher plus [+] Moins [-]Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar Texte intégral
2016
Darby, Ian | Xu, Cheng-Yuan | Wallace, Helen M. | Joseph, Stephen | Pace, Ben | Bai, Shahla Hosseini
This study aims to examine the effects of different organic treatments including compost (generated from cattle hide waste and plant material), compost mixed with biochar (compost + biochar) and a new formulation of organo-mineral biochar (produced by mixing biochar with clay, minerals and chicken manure) on carbon (C) nitrogen (N) cycling. We used compost at the rate of 20 t ha⁻¹, compost 20 t ha⁻¹ mixed with 10 t ha⁻¹ biochar (compost + biochar) and organo-mineral biochar which also contained 10 t ha⁻¹ biochar. Control samples received neither of the treatments. Compost and compost + biochar increased NH₄⁺ -N concentrations for a short time, mainly due to the release of their NH₄⁺ -N content. Compost + biochar did not alter N cycling of the compost significantly but did significantly increase CO₂ emission compared to control. Compost significantly increased N₂O emission compared to control. Compost + biochar did not significantly change N supply and also did not decrease CO₂ and N₂O emissions compared to compost, suggesting probably higher rates of biochar may be required to be added to the compost to significantly affect compost-induced C and N alteration. The organo-mineral biochar had no effect on N cycling and did not stimulate CO₂ and N₂O emission compared to the control. However, organo-mineral biochar maintained significantly higher dissolved organic carbon (DOC) than compost and compost + biochar from after day 14 to the end of the incubation. Biochar used in organo-mineral biochar had increased organic C adsorption which may become available eventually. However, increased DOC in organo-mineral biochar probably originated from both biochar and chicken manure which was not differentiated in this experiment. Hence, in our experiment, compost, compost + biochar and organo-mineral biochar affected C and N cycling differently mainly due to their different content.
Afficher plus [+] Moins [-]