Affiner votre recherche
Résultats 2571-2580 de 4,936
Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles Texte intégral
2019
Li, Yujiao | Yang, Zhimin | Chen, Yucheng | Huang, Lei
Adsorption plays an important role in removing cadmium (Cd²⁺) from water, and magnetic adsorbents are increasingly being used due to their ease of separation and recovery. Magnetic Fe₃O₄–coated hydroxyapatite (HAP) nanoparticles (nHAP-Fe₃O₄) were developed by co-precipitation and then used for the removal of Cd²⁺ from water. The properties of these nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and magnetization curves. Experiments were conducted to investigate the effects of adsorption and mechanisms. Results illustrated that kinetic data were well fitted by a pseudo-second-order model. The adsorption capacity of nHAP-Fe₃O₄ was 62.14 mg/g. The mechanisms for the adsorption of Cd²⁺ on nHAP-Fe₃O₄ included rapid surface adsorption, intraparticle diffusion, and internal particle bonding, with the ion exchange with Ca²⁺ and chemical complexation being the most dominant. The regeneration efficiency and recovery rate of nHAP-Fe₃O₄ eluted by EDTA-Na₂ after the fifth cycle were 63.04% and 40.2%, respectively. Results revealed that the feasibility of nHAP-Fe₃O₄ as an adsorbent of Cd²⁺ and its environmental friendliness make it an ideal focus for future research.
Afficher plus [+] Moins [-]Catalytic Degradation of Humic Acid by Mn-Cu/Al-MCM-41 Catalyst in Electro-Fenton/Chlorine Processes: Influencing Factors, Mechanisms, and Kinetics Texte intégral
2019
Liu, Zailiang | Meng, Hailing | Li, Chao | Liu, Tinglei | Cao, Jiashun | Lv, Yaohui
Degradation of humic acid (HA) in heterogeneous electro-Fenton/chlorine processes was investigated using a catalyst of Mn-Cu bimetallic oxides supported on Al-containing MCM-41. The catalyst was synthesized by co-precipitation method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N₂ adsorption–desorption, and X-ray photoelectron spectroscopy (XPS) techniques. The bimetallic oxide catalyst exhibited a higher activity compared to monometallic one. Adding Al in the bimetallic oxide catalyst enhanced the stability of the catalyst, reduced metal ion leaching, increased the initial ratio of Mn³⁺/Mn⁴⁺ and Cu⁺/Cu²⁺, and slightly enhanced the degradation efficiency of HA and corresponding chemical oxygen demand (COD). The effect of Mn and Cu content in MCM-41, catalyst dosage, pH value, and initial concentration of HA and salinity on degradation efficiency were investigated. A high COD reduction about 91.5% and general current efficiency (GCE) about 41.7% have been achieved under the optimal conditions of pH 6, salinity 1000 mg/L, catalyst dosage 0.5 g/L, HA sodium salt concentration 200 mg/L, and reaction time 60 min. A possible mechanism for the reaction was suggested. Kinetic analysis showed that HA degradation in the electro-Fenton/chlorine processes was fit with first-order kinetics.
Afficher plus [+] Moins [-]Equilibrium and Kinetic Study of Ammonium Sorption by Raphia farinifera Texte intégral
2019
Staroń, Paweł | Sorys, Paulina | Chwastowski, Jarosław
The study investigated the sorption capacity of biosorbent-raphia sp. against ammonia. Raphia fibers were used without and with the modification of its surface with NaCl, NaNO₃, and K₂SO₄. The data was analyzed in the state of equilibrium using four isotherm models such as Langmuir, Freudlich, Temkin, and Dubinin-Radushkevich. The equilibrium of ammonia sorption for all studied systems was best described by the Freudlich isotherm model. On its basis, it can be assumed that the studied process is of chemical nature, which results from the value of the coefficient 1/n < 1. In order to confirm the sorption mechanism, analysis of the kinetics of the ammonia sorption process on raphia fibers was performed. Four kinetic models of sorption were calculated: pseudo-first-order model, pseudo-second-order model, Elovich model, and Webber-Morris intermolecular diffusion model. The sorption kinetics of the modeled ammonia waste were carried out using unmodified palm fibers and all kinds of surface modification. This process was best described by the pseudo-second-order sorption model, which can be considered as a confirmation of the chemical nature of ammonia sorption on raphia sp. fibers.
Afficher plus [+] Moins [-]Nitrogen Biogeochemistry of Anaerobic Biodegradation of Naphthalene Texte intégral
2019
Zhang, Menghuan | Zhang, Fengjun | Ma, Zhe | Wan, Yuyu
A mixed community of bacteria was enriched from groundwater contaminated with naphthalene as the sole carbon source. Based on the results of 16S rRNA sequences, Acinetobacter and Pseudomonas were the predominant species in the naphthalene-enriched culture. Different initial forms of nitrogen, including nitrate, nitrite, and ammonium, were beneficial to naphthalene degradation, which was considered second-order kinetics and naphthalene could be decreased by 94.68% during the incubation period of 30 days with an initial naphthalene concentration of 0.5 mg/L. These clear biogeochemical denitrification signals, the consumption and accumulation of nitrate, nitrite, and ammonium during the incubation period, suggested that naphthalene degradation may be coupled with denitrification and DNRA metabolism. Nitrate and nitrite were reduced mainly as electron acceptors, and ammonium was utilized by microorganisms as an important inorganic nutrient for their growth and reproduction, which promoted the degradation of naphthalene. The results of this study contributed to the removal pathway and transformational mechanism of nitrogen and reveal their involvement in the anaerobic biodegradation of naphthalene.
Afficher plus [+] Moins [-]Removal of Crystal Violet from Natural Water and Effluents Through Biosorption on Bacterial Biomass Isolated from Rhizospheric Soil Texte intégral
2019
Canizo, Brenda V. | Agostini, Elizabeth | Wevar Oller, Ana L. | Dotto, Guilherme L. | Vega, Israel A. | Escudero, Leticia B.
It was investigated the potential of Rhodococcus erythropolis AW3 as a biosorbent for the removal of crystal violet (CV) dye from natural water and real effluents. The biosorbent was characterized by flow cytometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy X-ray dispersive spectroscopy (EDS), and point of zero charge (pHZPC). Batch biosorption experiments were performed to optimize different parameters involved in the biosorption process. The equilibrium was reached at 90 min at the optimum biosorbent dose of 0.50 g L⁻¹ and pH of 9.0. Results indicated that Langmuir isotherm model was the most suitable to represent the experimental data, and the highest biosorption capacity was 289.8 mg g⁻¹. Kinetic data were well fitted with the pseudo-second-order model. The thermodynamic study showed that the process was favorable, exothermic, and associated with an increase of entropy. Finally, it was demonstrated that the biosorption process using Rhodococcus erythropolis AW3 could be successfully applied to remove CV from natural water and effluents derived from clinical and industrial activities.
Afficher plus [+] Moins [-]Effects of Liming and Urochloa brizantha Management on Leaching Potential of Picloram Texte intégral
2019
Passos, Ana Beatriz R. J. | Souza, Matheus F. | Saraiva, Douglas T. | da Silva, Antônio Alberto | Queiroz, Maria Eliana L. R. | Carvalho, Felipe P. | Silva, Daniel Valadão
In pastures, the application of limestone is often performed after removal of the animals for proper development and establishment of regrowth. Together with this practice, the use of picloram in high concentrations for dicotyledonous weeds is common. Therefore, the evaluation of the behavior of this herbicide in these conditions is critical. The objective of this study was to determine the leaching of the picloram, in the soil with different pH and cultivated with Urochloa brizantha (signalgrass) trimmed or not. The experiment was plotted in a subdivided plot with four repetitions, where the plots were constituted by factors pH (5.3 and 6.4) and Urochloa brizantha managements (trimmed and no trimmed). The subplots were composed by depths (0 to 50 cm). The picloram was applied to the top of the columns after 65 days after emergency. A rain of intensity of 60 mm was simulated 12 h after the herbicide application. Picloram concentration was quantified by the high-performance liquid chromatography. Besides that, a control treatment was added without the presence of the signalgrass, for each substrate. The picloram was not detected in the percolated water through the columns. Picloram leached to deeper layers in the soil with pH 6.4, independently of the signalgrass management. The signalgrass reduced the leaching of the picloram, and those no-trimmed demonstrate a higher capacity to retain the herbicide in superficial layers. The liming of the soil increases the pH and reduces the amount of organic matter in the soil, which favors the leaching of picloram to the layer of 30–35 cm. Trimming of Urochloa brizantha reduces the capacity of this forage to reduce the leaching of picloram.
Afficher plus [+] Moins [-]Ultrastructural damage and biochemical alterations in the testes of red palm weevils (Rhynchophorus ferrugineus) exposed to imidacloprid Texte intégral
2019
Alzahrani, Abdullah M.
Despite the widespread use of the insecticide imidacloprid (IMI), a neonicotinoid, there is an urgent need for documenting information related to its acute toxicity. Therefore, this study aims to explore the markers of IMI acute toxicity in the testes of the red palm weevil (Rhynchophorus ferrugineus). The LC₅₀ of IMI was determined at 15.7 ppm for male R. ferrugineus. We assessed biochemical alterations in the testes resulting from treatment with four IMI concentrations (10, 15, 20, and 30 ppm). A reduction in glutathione content and acetylcholine esterase activity followed the IMI concentration in a dependent manner. Catalase activity was inhibited only at 20 ppm, while it increased significantly at 30 ppm. Lipid peroxidation increased steadily as the IMI concentrations increased. Based on ultrastructural analyses of spermiogenic stages, acute IMI toxicity produced swelling and degeneration of spermatid mitochondria indicating structural imbalances in their membranes. Further, abnormal chromatin condensation in nuclei and even loss of sperm were also apparent. This study provides biochemical and ultrastructural indicators for acute toxicity resulting from IMI.
Afficher plus [+] Moins [-]Assessing the seasonality of occupancy number-associated CO2 level in a Taiwan hospital Texte intégral
2019
Li, Yi-Chen | Tseng, Wen-Chang | Hsieh, Nan-Hung | Chen, Szu-Chieh
This study enabled the assessment of indoor CO₂ levels and evaluated the relationship between occupancy numbers with CO₂ levels in a Taiwan hospital. The measurements were conducted over four seasons for five working days (Monday to Friday), with sampling conducted simultaneously from 09:00 am to 5:00 pm and across six locations (for spatial variability): hall (H), registration and cashier (RC), waiting area (WA), occupational therapy room (OT), physical therapy room (PT), and outdoors (O). Based on the analysis, three of the five indoor sampling sites showed significant differences in seasonal CO₂ concentrations (p < 0.0001). Based on our result, the physical therapy room had the highest level of CO₂ concentration that exceeded the IAQ standard in Taiwan Environmental Protection Agency (EPA) in all seasons, in that the number of occupants contributing to nearly 40% of the variation in CO₂ measured. Our results also showed that the indoor/outdoor (I/O) ratios of CO₂ concentration for all locations and seasons exceeded 1 in ~ 100% of those locations. The median I/O ratio at sites WA and OT was 2.37 and 2.08 during four seasons, respectively. The highest median I/O ratio was found at site PT, with a calculated range of 2.69 in spring to 3.90 in fall. The highest correlation of occupancy number and CO₂ concentration also occurred in PT which correlation coefficients were estimated at 0.47, 0.65, 0.63, and 0.40 in spring, summer, fall, and winter. The findings of the present study can be used to understand occupancy number and its effect on CO₂ levels in a hospital environment, as well as the effect of time of day (Monday to Friday) on the number of patients admitted.
Afficher plus [+] Moins [-]Removal of amoxicillin from simulated hospital effluents by adsorption using activated carbons prepared from capsules of cashew of Para Texte intégral
2019
Lima, Diana Ramos | Lima, Eder C. | Umpierres, Cibele S. | Thue, Pascal Silas | El-Chaghaby, Ghadir A. | da Silva, Raphaelle Sanches | Pavan, Flavio A. | Dias, Silvio L. P. | Biron, Camille
High-surface-area activated carbons were prepared from an agroindustrial residue, Bertholletia excelsa capsules known as capsules of Para cashew (CCP), that were utilized for removing amoxicillin from aqueous effluents. The activated carbons were prepared with the proportion of CCP:ZnCl₂ 1:1, and this mixture was pyrolyzed at 600 (CCP-600) and 700 °C (CCP700). The CCP.600 and CCP.700 were characterized by CHN/O elemental analysis, the hydrophobic/hydrophilic ratio, FTIR, TGA, Boehm titration, total pore volume, and surface area. These analyses show that the adsorbents have different polar groups, which confers a hydrophilic surface. The adsorbents presented surface area and total pore volume of 1457 m² g⁻¹ and 0.275 cm³ g⁻¹ (CCP.600) and 1419 m² g⁻¹ and 0.285 cm³ g⁻¹ (CCP.700). The chemical and physical properties of the adsorbents were very close, indicating that the pyrolysis temperature of 600 and 700 °C does not bring relevant differences in the physical and chemical properties of these adsorbents. The adsorption data of kinetics and equilibrium were successfully adjusted to Avrami fractional-order and Liu isotherm model. The use of the adsorbents for treatment of simulated hospital effluents, containing different organic and inorganic compounds, showed excellent removals (up to 98.04% for CCP.600 and 98.60% CCP.700). Graphical abstract
Afficher plus [+] Moins [-]Membrane biofouling retardation by zwitterionic peptide and its impact on the bacterial adhesion Texte intégral
2019
Wang, Si-Yu | Han, Deng-Cheng | Song, Chao | Li, Meng-Na | Afzal, Muhammad Zaheer | Wang, Shu-Guang | Sun, Xue-Fei
Nanofiltration polyamide membranes naturally tend towards biofouling, due to their surface physicochemistries. Nisin, a type of short cationic amphiphilic peptide with antimicrobial properties, has been recognized as a safe antimicrobial for food biopreservation and biomedical applications. This study investigates the impact of nisin on the initial bacterial attachment to membranes, its anti-biofouling properties, and characterizes a non-monotonic correlation between nisin concentration and biofilm inhibition. Nisin was found to inhibit B. subtilis (G+) and P. aeruginosa (G−) attachment to both the nanofiltration membrane and the PES membrane. To determine the mechanism of action, we investigated the polysaccharides, protein, and eDNA as target components. We found that the quantities of polysaccharides and eDNA were significantly changed, resulting in bacterial death and anti-adhesion to membrane. However, there were no discernable impacts on protein. We postulated that nisin could prevent irreversible biofouling by decreasing adhesion, killing bacteria, and reducing biofilm formation. We examined membrane flux behavior through bench-scale cross-flow experiments at a set concentration of nisin (100 μg mL⁻¹), with membrane behavior being confirmed using CLSM images. Results showed that nisin could enhance anti-biofouling properties through both anti-adhesive and anti-bacterial effects, and therefore could be a novel strategy against biofouling of membranes.
Afficher plus [+] Moins [-]