Affiner votre recherche
Résultats 261-270 de 449
Determination of Enterobacteria in Air and Wastewater Samples from a Wastewater Treatment Plant by Epi-Fluorescence Microscopy
2008
Patentalakis, N | Pantidou, A | Kalogerakis, N
Bacteria, fungi and viruses are often encountered in aerosols and they can be pathogenic or cause allergies following inhalation. Wastewater treatment facilities have been found to generate bioaerosols, which are transported by the prevailing winds downstream to areas that can be up to several hundred meters away. Bioaerosol formation has a significant effect on air quality in the vicinity of the treatment plants. The amount and characteristics of the formed bioaerosols depend on the aeration system employed at the aeration tank of the wastewater treatment facility. In this work we determined Enterobacteria in air and wastewater samples at the main wastewater treatment facility of the city of Chania (Crete, Greece). Concentrations of airborne bacteria were measured near the aeration and sedimentation tanks. Samples of airborne bacteria were taken by using Merck's MAS-100 bioaerosol collector followed by incubation and enumeration of the colonies. The use of different growth media enabled the separation and enumeration of several classes of microorganisms. As part of this study, Enterobacteria in air samples were also determined by filtration sampling followed by analysis of the collected microorganisms using DAPI staining to determine total cell counts (both viable and non-viable cells). Fluorescence in situ hybridization (FISH) with specific 23S rRNA probes was also used in order to identify specific groups of microorganisms (well known pathogens) present in the bioaerosols. The analysis was also performed in wastewater taken from the aeration and secondary sedimentation tanks in an effort to correlate the airborne bacteria with those in the wastewater.
Afficher plus [+] Moins [-]Source Identification and Speciation of Metals in the Topsoil of the Khli Ti Watershed, Thailand
2008
Panichayapichet, Paweena | Nitisoravut, Suwanchai | Simachaya, Wijarn | Wangkiat, Arpa
The enrichment factor, multivariate analysis and metal speciation studies were used to identify degree, source and dispersal of metal contamination in Khli Ti watershed, Thailand. Topsoil samples were collected throughout the watershed, analyzed for total metal concentration. Sequential extraction was also carried out to determine geochemical phases of metals which were identified as exchangeable and bound to carbonates, Fe–Mn oxides, organic matter and residuals. Soil characteristics including pH, total organic carbon, redox potential, cation exchange capacity and texture were also analyzed. Principal component analysis yielded three metal groups which explained 83% of the variance. The concentrations of metals which were derived from lithogenic origin, such as Co, Cr, Fe, Ni and V were in natural background levels and were mostly bound to the residual phase. The remaining elements (i.e. Ba, Cd, Cu, Pb, Sb and Zn) were associated with the contamination from previous activities of the Pb-ore concentrator and Zn–Pb mining. Anthropogenic contamination mainly increased Pb and Zn bound to Fe–Mn oxides at the expense of residual fraction. Even though low exchangeable Pb contents in Khli Ti soils indicated low availability to plants, Pb bound to Fe–Mn oxides fraction might increase its mobility under reducing conditions.
Afficher plus [+] Moins [-]Effect of Aluminium on Microbial Respiration
2008
Dorea, Caetano C. | Clarke, Brian A.
Aluminium is a non-essential element for biological systems and is used in water and wastewater processes that rely on (micro)biological purification processes. The effect of Al doses ranging from 100 to 2,000 μg/l on the microbial dissolved oxygen uptake (respiration) over a 24-h period was assessed. Results indicated that Al can reduce the 24-h respiration, but the effects of pH depression due to Al dosing during testing should be taken into account.
Afficher plus [+] Moins [-]Response to Chemical Alarm Cues under Weakly Acidic Conditions: A Graded Loss of Antipredator Behaviour in Juvenile Rainbow Trout
2008
Leduc, Antoine O.H.C. | Lamaze, Fabien C. | McGraw, Lindsay | Brown, Grant E.
A wide variety of aquatic organisms, including juvenile salmonids, assess local predation risks using chemosensory cues. Such chemical cues are typically released from injured conspecifics and their detection may lead to species-typical antipredator behaviour, increasing the probability of prey to survive during predator encounters. Studies have demonstrated however, that under weak acidification (pH ~6.0), the response towards these chemical alarm cues is impaired. However, it remains unknown if the loss of response is graded (i.e., the behavioural response decreases with a reduction in pH) or if there is a threshold pH at which prey can no longer detect the alarm cues. We conducted two laboratory experiments to examine the effects of a graded reduction in pH on the behavioural response of juvenile rainbow trout to conspecific chemical alarm cues. The results of our first experiment suggest that at pH 6.6 and above, the alarm cues elicited a strong antipredator response, while alarm cues buffered to pH 6.2 did not (i.e. not different from distilled water). However, alarm cues buffered to pH 6.4 elicited a weak response, suggesting a graded response. We directly tested this in our second experiment using a repeated measures design. The response to alarm cues at varying pH levels did indeed follow a graded loss of function. Together, our results suggest that juvenile rainbow trout exhibit a reduction in the response to conspecific alarm cues proportional to ambient acidity and that the response to these critically important cues is lost at pH below 6.4. As the detection and response to these chemical alarm cues have been shown to confer direct survival benefit to individuals, these results are therefore presented in relation to possible sub-lethal effects of anthropogenic acidification to freshwater fish.
Afficher plus [+] Moins [-]A Review of the Different Methods Applied in Environmental Geochemistry For Single and Sequential Extraction of Trace Elements in Soils and Related Materials
2008
Rao, C. R. M. | Sahuquillo, A. | Lopez Sanchez, J. F.
A comprehensive review of the single and sequential extraction schemes for metal fractionation in environmental samples such as soil and industrially contaminated soils, sewage sludge and sludge amended soils, road dust and run off, waste and miscellaneous materials along with other approaches of sequential extraction methods are being presented. A discussion on the application of chemometric methods in sequential extraction analysis is also being given. The study of single and sequential extraction methods for various reference materials are also being looked into. The review covers several aspects of the single and sequential extraction methodologies. The use of each reagents involved in these schemes are also discussed briefly. Finally the present upto date information by different workers in various fields of environmental geochemistry along with the possible future developments are also being outlined.
Afficher plus [+] Moins [-]Estimating Foliar Nitrogen Concentration of Heather (Calluna vulgaris) from Field and Laboratory Spectra
2008
Regional botanical surveys supported by field experiments suggest that atmospheric nitrogen deposition threatens the balance between species and causes loss of biodiversity within plant communities. Methods are required to monitor the nitrogen status of vegetation at a landscape scale and therefore the potential for ecological change. Remote sensing has the potential to monitor a number of plant biophysical and chemical variables, but its application to monitor the nitrogen status of native vegetation remains limited and untested. Using field spectroscopy, canopy reflectance measurements were taken from two heathland field sites and heather (Calluna vulgaris) plants grown in a greenhouse. The nitrogen concentration was determined through destructive sampling and chemical analysis. Stepwise multiple regression analysis was used to identify the wavebands most associated with nitrogen concentration and despite high variation in the selected wavebands between the three datasets, most of these wavebands were associated with nitrogen and protein absorption features within the spectral region 1,990–2,170 nm. Results highlight the potential of remote sensing as a bio-monitoring technique to estimate foliar nitrogen status in native plants.
Afficher plus [+] Moins [-]Mobility and Availability of Copper in Agricultural Soils Irrigated from Water Treated with Copper Sulfate Algaecide
2008
Salam, D. | El-Fadel, M.
In this paper, downward movement and availability of copper in soils irrigated with CuSO₄ algaecide treated water were examined using column leaching experiments. Two simulations considering 1 and 10 years irrigation period were conducted at copper application rate of about 18.7 kg CuSO₄/ha/year. Effluent copper concentrations and vertical distribution of acid and DTPA-extractable copper in the soil columns were determined. Nearly 99% of the applied copper was retained in the soil with a C e/C ₀ values on the order of 10⁻³. Retention profiles showed that copper was retained in the upper 2 to 3 cm of the soil. However, a significant fraction of the retained copper was detected in available form (DTPA-Cu) suggesting that plants toxicity could be a major limitation for the use of CuSO₄ treatment in irrigation water.
Afficher plus [+] Moins [-]Estimating the Risk of Exceeding Thresholds in Environmental Systems
2008
Bennett, Elena M. | Carpenter, Stephen R. | Cardille, Jeffrey A.
Environmental regulations often rely on limits or thresholds to indicate an acceptable pollutant load. Estimates of the Risk of Exceeding such Thresholds (RET) are often based on a single model deemed to be the best for the particular pollutant or particular case. However, if many models make different predictions but explain the data almost equally well, predictions based on a single model may omit important information contained in other models that fit almost as well as the “best” single model. More accurate assessments of RET may result if multiple models are considered. We compared performance of the single best model relative to that of an ensemble of models estimated by bagging (Bootstrap AGGregatING) using the example of soil P concentrations and the risk of exceeding environmental limits of soil P concentrations in the watershed of Lake Mendota, Wisconsin, USA. Bagging yielded significantly better predictions of the risk of exceeding a threshold level of soil P (99.6% accuracy versus 74% for single-model prediction at a 20 mg kg⁻¹ threshold). Use of multiple model techniques can improve estimates of RET over a range of realistic thresholds in other management situations where thresholds are important including eutrophication, desertification, fisheries, and many types of pollution control.
Afficher plus [+] Moins [-]Simulation of Exterior Conditions in Permanently Closed Soil Chambers by Controlling Air Flow, Soil Water Content, and Temperature
2008
Rüth, Bernhard | Grundmann, Sabine | Schroll, Reiner
Volatile substances and gases resulting e.g. from degradation processes of chemicals in soils emit into the atmosphere and no chemical mass balance is complete without considering this path. Closed soil chambers allow the evaluation of this transfer to the atmosphere. This study deals with the influence of soil chambers with a glass plate cover on physical soil conditions in the chambers and the possibility to simulate the exterior conditions within the chambers. The water content immediately at the soil surface is an important factor for the microbial activity and the transfer of gaseous compounds to the atmosphere as well. It is monitored by specially designed water content sensors in 1 cm depth in the chamber and as control outside. Funnels with a cross section equal to the soil surface area of the chamber collect the rain water and channel it into the soil chamber. This results in soil water content in the chambers very similar to that outside. For the purpose of analysing ¹⁴CO₂ and volatile ¹⁴C-compounds, air is permanently pumped through the chamber. In order to simulate natural conditions, the wind speed is measured 1 cm above the soil surface outside the chambers. A control circuit adjusts the air flow through the chamber to a value corresponding to the wind speed outside. Temperature measurements in 1 cm depth verify that there is no significant difference between the soil chamber and the control outside.
Afficher plus [+] Moins [-]Polycyclic Aromatic Hydrocarbons (PAH) in Water and Sediment from Gully Pots
2008
A gully pot is often cleaned with the help of an eductor truck, which uses hydrodynamic pressure and a vacuum to loosen and remove the solids and standing liquid from a gully pot. This paper considers the polycyclic aromatic hydrocarbons (PAH) content in the gully pot mixture (water and sediment) after it has been discharged from the eductor truck. The results show that most PAH was attached to particles, and the dissolved phase represented approximately 22% of the total water concentration. No significant difference was found for the water phase between a housing area and a road, whereas a significant difference was found for NAP, ACE, FL, ANT, FLR, PYR, BaF, and BPY in the sediment at a 95% confidence level. Source identification showed that the PAH in the gully pot mixture came from mixed sources. Both the water and sediment phase exceed all or some of the compared guidelines. The result from this paper shows that not only the sediment needs to be discussed, but also the water phase created during the maintenance of different BMPs.
Afficher plus [+] Moins [-]