Affiner votre recherche
Résultats 261-270 de 558
Fractionation of levofloxacin and ofloxacin during their transport in NOM-goethite : Batch and column studies Texte intégral
2023
Qin, Xiaopeng | Zhong, Xiaofei | Wang, Bin | Wang, Guangcai | Liu, Fei | Weng, Liping
Adsorption and transport of levofloxacin (LEV) and ofloxacin (OFL) enantiomers in a matrix containing goethite and natural organic matter (NOM) were investigated using batch and column experiments. In batch studies, competition and enantioselectivity were observed in the adsorption of LEV and OFL. Enantioselectivity upon adsorption was investigated by comparing changes in the enantiomer fraction (EF) (the ratio of LEV to the sum of LEV and OFL remaining in the solution) after and before adsorption. At pH < 7, there was hardly any selectivity in adsorption of OFL and LEV to goethite. At pH > 7, OFL showed a stronger adsorption than LEV to goethite, and this preference remained when NOM samples of Leonardite humic acid (LHA) and Elliott Soil fulvic acid (ESFA) were added. However, when Suwannee River NOM (SRNOM) was added, the preference was reversed, and LEV was adsorbed more strongly. In single systems, the presence of different types of NOM increased adsorption of LEV and OFL, especially LEV. In column studies, preloaded NOM decreased the transport of LEV and OFL through goethite-coated sand. The EF values in the effluent increased with retention time and reached the largest values (0.59–0.72) at around 1.5 pore volume (PV), and then decreased again, reaching a stable value at 5.0–30.0 PV. Both batch and column experiments showed that, fractionation of LEV and OFL occurred during adsorption and transport in the presence of NOM-goethite complexes, which would eventually affect their environmental fate
Afficher plus [+] Moins [-]The role of microplastic aging on chlorpyrifos adsorption-desorption and microplastic bioconcentration Texte intégral
2023
Ju, Hui | Yang, Xiaomei | Osman, Rima | Geissen, Violette
Microplastics (MPs) in soil undergo different aging processes such as photoaging, mechanical abrasion and biodegradation, leading to alterations in the surface properties of MPs. In this study, we investigated the adsorption-desorption of chlorpyrifos (CPF) on pristine and UV light-aged low-density polyethylene (LDPE) and biodegradable (Bio) MPs that were derived from plastic mulch films. We also tested the bioconcentration of pristine and aged MPs (LDPE- and Bio-MPs aged under UV light and LDPE-MPs aged in three different soils) associated with CPF by earthworms (Lumbricus terrestris). The results showed that UV-aged MPs showed higher CPF adsorption capacities than pristine MPs, with the adsorption capacities at 184.9 ± 5.3, 200.5 ± 1.8, 193.0 ± 8.7, and 215.9 ± 1.1 μg g−1 for pristine LDPE-, UV-aged LDPE-, pristine Bio- and UV-aged Bio-MPs, respectively. The desorption rate of CPF from UV-aged LDPE-MPs within 48 h was lower than the desorption from pristine ones (28.8 ± 7.7% vs. 40.0 ± 3.9%), while both pristine and UV-aged Bio-MPs showed very low CPF desorption rates. A 4-day Petri dish experiment showed that UV-aged MPs were significantly less concentrated in earthworm casts than pristine counterparts (52% and 36% lower for UV-aged LDPE- and Bio-MPs), while UV-aged MPs with adsorbed CPF were concentrated significantly more than UV-aged MPs without CPF. Interestingly, LDPE-MPs aged in soil with a high carbon, nitrogen, and carbon-to-nitrogen ratio were significantly more concentrated in earthworm casts than pristine LDPE-MPs. In conclusion, UV-aged MPs acted as stronger vectors for CPF than pristine MPs. The bioconcentration of MPs differed significantly due to microplastic aging, as well as the combined effect with CPF. Moreover, LDPE-MPs aged in soil with enriched carbon and nitrogen were significantly concentrated in earthworm casts. Further studies on the environmental behaviours of aged MPs associated with other pollutants in soil, especially soils high in carbon and nitrogen, are needed.
Afficher plus [+] Moins [-]Adaptive plastic responses to metal contamination in a multistress context: a field experiment in fish Texte intégral
2023
Petitjean, Quentin | Laffaille, Pascal | Perrault, Annie | Cousseau, Myriam | Jean, Séverine | Jacquin, Lisa | Laboratoire Méthodes Formelles (LMF) ; Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay) | Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | Evolution et Diversité Biologique (EDB) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) | Institut universitaire de France (IUF) ; Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
International audience
Afficher plus [+] Moins [-]Disruption of oogenesis and molting by methoprene and glyphosate in Gammarus fossarum: involvement of retinoic acid? Texte intégral
2023
Gauthier, Maxime | Defrance, Jérémy | Jumarie, Catherine | Vulliet, Emmanuelle | Garric, Jeanne | Boily, Monique | Geffard, Olivier | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Université du Québec à Montréal = University of Québec in Montréal (UQAM) | ISA-TRACES - Technologie et Recherche en Analyse Chimique pour l'Environnement et la Santé ; Institut des Sciences Analytiques (ISA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | ANR-18-CE34-0013,APPROve,Démarche intégrée pour proposer la protéomique dans la surveillance : accumulation, devenir et multimarqueurs(2018)
International audience | In the last decade, the freshwater amphipod Gammarus fossarum proved to be a promising sentinel species in active biomonitoring programs to assess the effects of environmental contamination on non-target organisms. Given that the highly conserved retinoid (RETs) metabolism supports many biological functions and is perturbed by xenobiotics and used as biomarker for vertebrates, we explored the RETs functions in the crustacean model Gammarus fossarum. More specifically, we studied the implication of all -trans retinoic acid (atRA) in the reproduction (embryo, oocyte, and juvenile production) and development (success and delay of molting) by exposing G. fossarum females to atRA and citral (CIT), a known inhibitor of RA synthesis. In parallel, we exposed gammarids to methoprene (MET) and glyphosate (GLY), two pesticides suspected to interfere with atRA metabolism and signaling and frequently found in water systems. After 14 days of exposure, atRA, CIT, and MET reduced the number of oocytes, whereas only MET caused a reduced number of embryos. After 44 days, MET and GLY showed a tendency to decrease juvenile production. The duration of the molting cycle increased following the exposures to atRA and MET, while the treatment with CIT caused a typical endocrine disruptive inverted U-shaped curve. The exposure to GLY led to increased duration of the molting cycle at the lowest concentrations and lowered molting success at the highest concentration tested. This study highlights for the first time the implication of RA in the oogenesis and molting of G. fossarum and suggests that it may be a potential mediator of MET-induced effects on these processes. This study adds to the comprehension of the reproductive and developmental control in G. fossarum and opens new research avenues to study the effects of xenobiotics on the RET system in this sentinel species. Ultimately, our study will drive the development of RET-based biomarkers for non-target aquatic invertebrates exposed to xenobiotics.
Afficher plus [+] Moins [-]Assessment of cyanotoxins in water and fish in an African freshwater lagoon (Lagoon Aghien, Ivory Coast) and the application of WHO guidelines Texte intégral
2023
Yao, Eric Kouamé | Ahoutou, Mathias Koffi | Olokotum, Mark | Hamlaoui, Sahima | Lance, Emilie | Marie, Benjamin | Bernard, Cécile | Djeha, Rosine Yao | Quiblier, Catherine | Humbert, Jean-François | Coulibaly, Julien Kalpy | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | In comparison with northern countries, limited data are available on the occurrence and potential toxicity of cyanobacterial blooms in lakes and ponds in sub-Saharan countries. With the aim of enhancing our knowledge on cyanobacteria and their toxins in Africa, we performed a 17-month monitoring of a freshwater ecosystem, Lagoon Aghien (Ivory Coast), which is used for multiple practices by riverine populations and for drinking water production in Abidjan city. The richness and diversity of the cyanobacterial community were high and displayed few variations during the entire survey. The monthly average abundances ranged from 4.1 × 10 4 to 1.8 × 10 5 cell mL −1 , with higher abundances recorded during the dry seasons. Among the five cyanotoxin families analyzed (anatoxin-a, cylindrospermopsin, homoanatoxin, microcystins, saxitoxin), only microcystins (MC) were detected with concentrations ranging from 0 to 0.364 μg L −1 in phytoplankton cells, from 32 to 1092 μg fresh weight (FW) kg −1 in fish intestines, and from 33 to 383 μg FW kg −1 in fish livers. Even if the MC concentrations in water and fish are low, usually below the thresholds defined in WHO guidelines, these data raise the issue of the relevance of these WHO guidelines for sub-Saharan Africa, where local populations are exposed throughout the year to these toxins in multiple ways.
Afficher plus [+] Moins [-]Disruption of oogenesis and molting by methoprene and glyphosate in Gammarus fossarum: involvement of retinoic acid? Texte intégral
2023
Gauthier, Maxime | Defrance, Jérémy | Jumarie, Catherine | Vulliet, Emmanuelle | Garric, Jeanne | Boily, Monique | Geffard, Olivier | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Université du Québec à Montréal = University of Québec in Montréal (UQAM) | ISA-TRACES - Technologie et Recherche en Analyse Chimique pour l'Environnement et la Santé ; Institut des Sciences Analytiques (ISA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)
Cadmium partitioning between hulls and kernels in three sunflower varieties: consequences for food/feed chain safety Texte intégral
2023
Nguyen, Christophe | Loison, Jean-Philippe | Motard, Céline | Dauguet, Sylvie | Interactions Sol Plante Atmosphère (UMR ISPA) ; Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Equipe Nutrition, Santé et Biochimie des Lipides (ITERG) | Terres Inovia
International audience | Contamination of sunflower seeds with soil Cd is an important issue for food and feed because this species strongly accumulates this metal. The present work reports that seeds from three sunflower varieties (ES Biba, Extrasol, Vellox) cultivated in the field in a calcareous agricultural soil having a moderately high Cd content (1 mg Cd/kg) had Cd contents of 0.84, 0.88 and 0.76 mg Cd/kg, respectively, all exceeding the regulation limit of 0.5 mg Cd/kg seeds for human food. On average, for the three varieties, washing seeds did not affect their total Cd contents but slightly increased the Cd in the kernels at the expense of that in hulls. Despite the Cd content of the whole seeds not differing between the varieties, the Cd fraction in the edible kernel differed significantly between varieties from 78 to 87% of the total seed Cd. The results of this study suggest that (i) the size of the kernel, relative to that of the hull, may affect the dilution of Cd in kernel tissues and (ii) there might be genetic variability for the capacity of transfer of Cd from the hull to the kernel. This opens the perspective to increase food safety by selecting sunflower genotypes that retain more Cd into the hull and transfer less of it to the edible kernel.
Afficher plus [+] Moins [-]Integument colour change : Tracking delayed growth of Oppia nitens as a sub-lethal indicator of soil toxicity Texte intégral
2023
Jegede, Olukayode O. | Fajana, Hamzat O. | Adedokun, Adedamola | Najafian, Keyhan | Lingling, Jin | Stavness, Ian | Siciliano, Steven D.
Growth is an important toxicity end-point in ecotoxicology but is rarely used in soil ecotoxicological studies. Here, we assessed the growth change of Oppia nitens when exposed to reference and heavy metal toxicants. To assess mite growth, we developed an image analysis methodology to measure colour spectrum changes of the mite integument at the final developmental stage, as a proxy for growth change. We linked the values of red, green, blue, key-black, and light colour of mites to different growth stages. Based on this concept, we assessed the growth change of mites exposed to cadmium, copper, zinc, lead, boric acid, or phenanthrene at sublethal concentrations in LUFA 2.2 soil for 14 days. Sublethal effects were detected after 7 days of exposure. The growth of O. nitens was more sensitive than survival and reproduction when exposed to copper (EC50growth = 1360 mg/kg compared to EC50reproduction = 2896 mg/kg). Mite growth sensitivity was within the same order of magnitude to mite reproduction when exposed to zinc (EC50growth = 1785; EC50reproduction = 1562 mg/kg). At least 25% of sublethal effects of boric acid and phenanthrene were detected in the mites but growth was not impacted when O. nitens were exposed to lead. Consistent with previous studies, cadmium was the most toxic metal to O. nitens. The mite growth pattern was comparable to mite survival and reproduction from previous studies. Mite growth is a sensitive toxicity endpoint, ecologically relevant, fast, easy to detect, and can be assessed in a non-invasive fashion, thereby complimenting existing O. nitens testing protocols.
Afficher plus [+] Moins [-]Microplastic appraisal of soil, water, ditch sediment and airborne dust: The case of agricultural systems Texte intégral
2023
Lwanga, Esperanza Huerta | Van Roshum, Ilse | Munhoz, Davi R. | Meng, Ke | Rezaei, Mahrooz | Goossens, Dirk | Bijsterbosch, Judith | Alexandre, Nuno | Oosterwijk, Julia | Krol, Maarten | Peters, Piet | Geissen, Violette | Ritsema, Coen
Although microplastic pollution jeopardizes both terrestrial and aquatic ecosystems, the movement of plastic particles through terrestrial environments is still poorly understood. Agricultural soils exposed to different managements are important sites of storage and dispersal of microplastics. This study aimed to identify the abundance, distribution, and type of microplastics present in agricultural soils, water, airborne dust, and ditch sediments. Soil health was also assessed using soil macroinvertebrate abundance and diversity. Sixteen fields were evaluated, 6 of which had been exposed to more than 5 years of compost application, 5 were exposed to at least 5 years of plastic mulch use, and 5 were not exposed to any specific management (controls) within the last 5 years. We also evaluated the spread of microplastics from the farms into nearby water bodies and airborne dust. We found 11 types of microplastics in soil, among which Light Density Polyethylene (LDPE) and Light Density Polyethylene covered with pro-oxidant additives (PAC) were the most abundant. The highest concentrations of plastics were found in soils exposed to plastic mulch management (128.7 ± 320 MPs.g-1 soil and 224.84 ± 488 MPs.g-1 soil, respectively) and the particles measured from 50 to 150 μm. Nine types of microplastics were found in water, with the highest concentrations observed in systems exposed to compost. Farms applying compost had higher LDPE and PAC concentrations in ditch sediments as compared to control and mulch systems; a significant correlation between soil polypropylene (PP) microplastics with ditch sediment microplastics (r2 0.7 p 0.05) was found. LDPE, PAC, PE (Polyethylene), and PP were the most abundant microplastics in airborne dust. Soil invertebrates were scarce in the systems using plastic mulch. A cocktail of microplastics was found in all assessed matrices.
Afficher plus [+] Moins [-]Effects of microplastics and chlorpyrifos on earthworms (Lumbricus terrestris) and their biogenic transport in sandy soil Texte intégral
2023
Ju, Hui | Yang, Xiaomei | Osman, Rima | Geissen, Violette
Although microplastics (MPs) are ubiquitous in agricultural soil, little is known about the effects of MPs combined with pesticides on soil organisms and their biogenic transport through the soil profile. In this study, we conducted mesocosm experiments to observe the effects of microplastics (polyethylene (LDPE-MPs) and biodegradable microplastics (Bio-MPs)) and chlorpyrifos (CPF) on earthworm (Lumbricus terrestris) mortality, growth and reproduction, as well as the biogenic transport of these contaminants through earthworm burrows. The results showed that earthworm reproduction was not affected by any treatment, but earthworm weight was reduced by 17.6% and the mortality increased by 62.5% in treatments with 28% Bio-MPs. Treatments with 28% LDPE-MPs and 7% Bio-MPs combined with CPF showed greater toxicity while the treatment with 28% Bio-MPs combined with CPF showed less toxicity on earthworm growth as compared to treatments with only MPs. The treatments with 1250 g ha−1 CPF and 28% Bio-MPs significantly decreased the bioaccumulation of CPF in earthworm bodies (1.1 ± 0.2%, w w−1), compared to the treatment with CPF alone (1.7 ± 0.4%). With CPF addition, more LDPE-MPs (8%) were transported into earthworm burrows and the distribution rate of LDPE-MPs in deeper soil was increased. No effect was observed on the transport of Bio-MPs. More CPF was transported into soil in the treatments with LDPE-MPs and Bio-MPs, 5% and 10% of added CPF, respectively. In addition, a lower level of the CPF metabolite 3,5,6-trichloropyridinol was detected in soil samples from the treatments with MPs additions than without MP additions, indicating that the presence of MPs inhibited CPF degradation. In conclusion, Bio-MPs caused significant toxicity effects on earthworms and the different types of MPs combined with CPF affected earthworms differently, and their transport along the soil profile. Thus, further research is urgently needed to understand the environmental risks of MPs and MP-associated compounds in the soil ecosystem.
Afficher plus [+] Moins [-]