Affiner votre recherche
Résultats 2691-2700 de 4,309
Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China Texte intégral
2017
Wang, Zuwei | Yu, Xiaoman | Geng, Mingshuo | Wang, Zilu | Wang, Qianqian | Zeng, Xiangfeng
Heavy metal concentrations in soil, wheat, and scalp hair exposed to Beijing sewage discharge channel sewage irrigation area (BSIA) in Tianjin were studied to evaluate the influence of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, with 55.2 and 8.62% of soil samples accumulating Cd and Zn, respectively, at concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain from BSIA were higher than these from the clean water irrigation area by 63.2% for Cd, 3.8% for Cu, 100% for Pb, 6.6% for Zn, and 326.7% for Cr. The heavy metal bioaccumulation factor (BAF) of wheat/soil in BSIA showed the following order: Zn > Cd > Cu > Pb > Cr. Interestingly, these accumulation of heavy metals in soil after sewage irrigation could increase the migration ability of heavy metals (particularly Zn and Cd) from soil to wheat. Mean concentrations of heavy metals in the hair of residents followed the decreasing trend of Zn > Cu > Pb > Cr > Cd, which were higher than the control area by 110.0% for Cd, 20.0% for Cu, 55.9% for Zn, 36.6% for Pb, and 64.6% for Cr. Concentrations of heavy metals in male human hair in BSIA were higher than those of females. And the concentrations of heavy metals except for Pb in human hair increased with their increasing ages. The heavy metal BAF values of wheat/soil in BSIA showed the trend of Zn (98.0057) > Pb (7.0162) > Cr (5.5788) > Cu (5.4853) > Cd (3.5584); heavy metals had obvious biological amplification from wheat to human hair. These results indicated that local population health was potentially exposed to the heavy metal risk via wheat consumption.
Afficher plus [+] Moins [-]Effects of liquid layers and distribution patterns on three-phase saturation and relative permeability relationships: a micromodel study Texte intégral
2017
Tsai, Jui-Pin | Chang, Liang-Cheng | Hsu, Shao-Yiu | Shan, Hsin-Yu
In the current study, we used micromodel experiments to study three-phase fluid flow in porous media. In contrast to previous studies, we simultaneously observed and measured pore-scale fluid behavior and three-phase constitutive relationships with digital image acquisition/analysis, fluid pressure control, and permeability assays. Our results showed that the fluid layers significantly influenced pore-scale, three-phase fluid displacement as well as water relative permeability. At low water saturation, water relative permeability not only depended on water saturation but also on the distributions of air and diesel. The results also indicate that the relative permeability–saturation model proposed by Parker et al. (1987) could not completely describe the experimental data from our three-phase flow experiments because these models ignore the effects of phase distribution. A simple bundle-of-tubes model shows that the water relative permeability was proportional to the number of apparently continuous water paths before the critical stage in which no apparently continuous water flow path could be found. Our findings constitute additional information about the essential constitutive relationships involved in both the understanding and the modeling of three-phase flows in porous media.
Afficher plus [+] Moins [-]Heavy metals in soils from a typical industrial area in Sichuan, China: spatial distribution, source identification, and ecological risk assessment Texte intégral
2017
Wang, Guiyin | Zhang, Shirong | Xiao, Luoyi | Zhong, Qinmei | Li, Linxian | Xu, Guangrong | Deng, Ouping | Pu, Yulin
Anthropogenic activities could result in increasing concentrations of heavy metals in soil and deteriorating in soil environmental quality. Topsoil samples from a typical industrial area, Shiting River Valley, Sichuan, Southwest China, were collected and determined for the concentrations of Cu, Zn, Cr, Cd, As, and Hg. The mean concentrations of these metals were lower than the national threshold values, but were slightly higher than their corresponding background values, indicating enrichment of these metals in soils in the valley, especially for Cu, Zn, and Hg. The topsoils in this area demonstrated moderate pollution and low potential ecological risk. Principal component analysis coupled with cluster analysis was applied to analyze the data and identified possible sources of these heavy metals; the results showed that soil Cd, Hg, As, Cu, and Zn were predominantly controlled by human activities, whereas Cr was mainly from the parent material. The spatial distribution of the heavy metals varied distinctly and was closely correlated to local anthropogenic activities. Furthermore, the concentrations of heavy metals in the industrial land demonstrated relatively higher levels than those of other land use patterns. Soil metal concentrations decreased with the distance increase from the traffic highway (0–1.0 km) and water system (0–2.0 km). Additionally, soil properties, especially pH and soil organic matter, were found to be important factors in the distribution and composition of metals.
Afficher plus [+] Moins [-]Qualitative and quantitative metals liberation assessment for characterization of various waste printed circuit boards for recycling Texte intégral
2017
Priya, Anshu | Hait, Subrata
Metals liberation and composition are decisive attributes in characterization of e-waste for metal recycling. Though end-of-life printed circuit board (PCB) is an integral part of e-waste as secondary resource reservoir, yet no standardized procedure exists for metals liberation and dissolution for its characterization. Thus, the paper aims at assessment of metals liberation upon comminution employing scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) followed by comparative assessment of the existing United States Environmental Protection Agency (USEPA) digestion procedures, viz., USEPA 3050B, USEPA 3051A, and USEPA 3052, in effective dissolution of metals from comminuted particles of waste PCBs of computer, laptop, mobile phone, and television. Effect of comminution and digestion conditions was assessed to have significant role in metal liberation and dissolution from PCBs. The SEM-EDS analysis demonstrated partial release of metals from the silica matrix of PCBs. The USEPA digestion methods showed statistically significant (P < 0.05) difference with greater dissolution of metals complexed to PCB matrix by the USEPA 3052 method owing to use of strong acid like hydrofluoric acid. Base metals like Cu and Zn and toxic metals such as Pb and Cd were present in abundance in PCBs and in general exceeded the total threshold limit concentration (TTLC). The maximum contents of Cu (20.13 ± 0.04 wt.%) and Zn (1.89 ± 0.05 wt.%) in laptop PCBs, Pb (2.26 ± 0.08 wt.%) in TV PCBs, and Cd (0.0812 ± 0.0008 wt.%) in computer PCBs were observed.
Afficher plus [+] Moins [-]Alleviative effect of selenium on inflammatory damage caused by lead via inhibiting inflammatory factors and heat shock proteins in chicken testes Texte intégral
2017
Wang, Yan | Wang, Kexin | Huang, He | Gu, Xianhong | Teng, Xiaohua
The aim of this study was to investigate ameliorative effect of selenium (Se) on lead (Pb)-induced inflammatory damage in chicken testes. One hundred eighty 7-day-old male chickens were randomly assigned into the control group, the Se group, the Pb group, and the Pb/Se group. Lead acetate was added in drinking water (350 mg/L Pb). Sodium selenite was added in the standard commercial diet (1 mg/kg Se). On the 30th, 60th, and 90th days of the experiment, 15 chickens of each group were euthanized. Inductively coupled plasma mass spectrometry, hematoxylin and eosin staining, real-time quantitative PCR, and Western blot were used. The results indicated that excess Pb increased nitric oxide content; inducible nitric oxide synthase (iNOS) activity; nuclear factor-kappa B (NF-κB), tumor necrosis factor-α, cyclooxygenase-2, prostaglandin E synthases, and iNOS mRNA levels in a time-dependent manner; NF-κB, iNOS, heat shock protein (HSP) 60, HSP70, and HSP90 protein levels; and Pb concentration. Excess Pb decreased Se concentration and induced histological changes. Se-alleviated Pb caused all of the above changes. Se improved Pb-caused inflammatory damage by decreasing the expression of inflammatory factors and heat shock proteins in the chicken testes. Our results provided theoretical basis of an alleviative effect of Se on Pb-induced bird testis damage.
Afficher plus [+] Moins [-]Health risk assessment of cadmium pollution emergency for urban populations in Foshan City, China Texte intégral
2017
Dou, Ming | Zhao, Peipei | Wang, Yanyan | Li, Guiqiu
With rapid socioeconomic development, water pollution emergency has become increasingly common and could potentially harm the environment and human health, especially heavy metal pollution. In this paper, we investigate the Cd pollution emergency that occurred in the Pearl River network, China, in 2005, and we build a migration and transformation model for heavy metals to simulate the spatiotemporal distribution of Cd concentrations under various scenarios of Cd pollution emergency in Foshan City. Moreover, human health hazard and carcinogenic risk for local residents of Foshan City were evaluated. The primary conclusions were as follows: (1) the number of carcinogen-affected people per year under scenario 1 reached 254.41 when the frequency was 0.1 year/time; specifically, the number of people with cancer per year in the area of the Datang, Lubao, and Nanbian waterworks was 189.36 accounting for 74% of the total number per year; (2) at the frequency of 5 years/time, the Lubao waterwork is the only one in extremely high- or high-risk grade, while besides it, the risk grade in the Datang, Nanbian, Xinan, Shitang, and Jianlibao waterworks is in the extremely high or high grade when the frequency is 0.1 year/time; (3) when Cd pollution accidents with the same level occurs again, Cd concentration decreases to a low level in the water only if the migration distance of Cd is at least 40–50 km. Based on the health risk assessment of Cd pollution, this study gives the recommendation that the distance should keep above 50 km in tidal river network of the Pearl River Delta between those factories existing the possibility of heavy metal pollution and the drinking water source. Only then can the public protect themselves from hazardous effects of higher levels of heavy metal.
Afficher plus [+] Moins [-]Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress Texte intégral
2017
Rizwan, Muhammad | Ali, Shafaqat | Zaheer Akbar, Muhammad | Shakoor, Muhammad Bilal | Mahmood, Abid | Ishaque, Wajid | Hussain, Afzal
Cadmium (Cd) contamination of farmland soils is a widespread problem around the globe, and rice (Oryza sativa L.) tends to accumulate more Cd and is considered as one of the major sources of Cd intake in humans, especially consuming rice-derived products. The current study investigated the effects of foliar applied aspartic acid (Asp) on growth parameters, biomass, chlorophyll concentration, gas exchange characteristics, Cd uptake, and antioxidative capacity in the shoots and roots of rice seedlings exposed to Cd stress. For this, 30-day-old rice nursery was transferred in the soil with aged Cd contamination (2.86 mg kg⁻¹). After 2 weeks of growth, different concentrations (0, 10, 15, and 20 mg L⁻¹) of Asp were foliar applied four times with a 7-day interval, and the crop was harvested after 10 weeks of transplanting. Foliar applied Asp increased the plant height, shoot and root dry weight, chlorophyll concentration, and gas exchange parameters, while it reduced the Cd concentrations in both shoots and roots as well as shoot to root Cd translocation factor compared to the control. Foliar application of Asp reduced the malondialdehyde content and electrolyte leakage in rice parts compared to the control in a dose-additive manner. The activities of key antioxidant enzymes increased while peroxidase activity decreased by exogenous Asp. The increase in plant weight and photosynthesis might be due to lower Cd concentrations in plants which may reduce the oxidative stress and also help the plants to minimize direct damage caused by Cd to the photosynthetic organs.
Afficher plus [+] Moins [-]Selenium for the mitigation of toxicity induced by lead in chicken testes through regulating mRNA expressions of HSPs and selenoproteins Texte intégral
2017
Huang, He | Wang, Yan | An yang, | Tian, Yaguang | Li, Shu | Teng, Xiaohua
Lead (Pb) is a toxic element and environmental pollutant. Pb toxicity and antagonistic effect of selenium (Se) on Pb have been deeply studied in mammals. The testis is one of the target organs of Pb in birds. The aim of this study was to investigate the mitigating effect of Se on Pb toxicity in chicken testes by determining messenger RNA (mRNA) expressions of 5 heat shock proteins (HSPs) and 25 selenoproteins. Sixty male chickens (7-day-old) were randomly divided into the control group, the Se group, the Pb group, and the Pb + Se group, and were fed for 90 days. The feeding methods of chickens were as follows: The control group was fed drinking water and commercial diet (0.49 mg/kg Se). Lead acetate was added into the drinking water (350 mg/L Pb). Sodium selenite was added into the commercial diet (1 mg/kg Se). Multivariate correlation analysis and principal component analysis (PCA) were used to define the relationships among all the measured factors and the most important parameters that could be used as key factors, respectively. The results indicated that Se decreased the increase of mRNA expressions of all the HSPs and increased the decrease of mRNA expressions of all the selenoproteins induced by Pb in the chicken testes. HSP70 may be a biomarker of Pb poisoning in the chicken testes. Se alleviated Pb-induced toxicity in the chicken testes through regulating mRNA expressions of HSPs and selenoproteins.
Afficher plus [+] Moins [-]Catalytic microwave pyrolysis of oil palm fiber (OPF) for the biochar production Texte intégral
2017
Hossain, MdArafat | Ganesan, PooBalan | Sandaran, ShantiChandran | Rozali, ShaifulazuarBin | Krishnasamy, Sivakumar
Microwave pyrolysis of oil palm fiber (OPF) with three types of Na-based catalysts was experimentally investigated to produce biochar. Sodium hydroxide (NaOH), sodium chloride (NaCl), and sodium carbonate (Na₂CO₃) with purity 99.9% were selected for this investigation. Microwave muffle reactor (Model: HAMiab-C1500) with a microwave power controller including a microwave generator was used to perform the microwave pyrolysis. OPF particles were used after removing foreign materials, impurities, and dust. Microwave power ranges from 400 to 900 W, temperature ranges from 450 to 700 °C, and N₂ flow rates ranges from 200 to -1200 cm³/min were used along with all three Na-based catalysts for this investigation. Lower microwave power, temperature, and N₂ flow rate have been found favorable for higher yield of biochar. NaOH is to be found as the more suitable catalyst than NaCl and Na₂CO₃ to produce biochar. A maximum biochar yield (51.42 wt%) has been found by using the catalysts NaOH at N₂ flow rate of 200 cm³/min. One sample of the biochar (maximum yield without catalysts) was selected for further characterization via thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), BET surface area, Fourier transform infrared spectroscopy (FTIR), and ultimate and proximate analysis. SEM and BET surface area analysis showed the presence of some pores in the biochar. High percentage of carbon (60.24 wt%) was also recorded in the sample biochar. The pores and high percentage of carbon of biochar have significant impact on soil fertilization by increasing the carbon sequestration in the soil. It assists to slow down the decomposition rate of nutrients from soil and therefore enhances the soil quality.
Afficher plus [+] Moins [-]Validation of ozone response functions for annual Mediterranean pasture species using close-to-field-conditions experiments Texte intégral
2017
González-Fernández, Ignacio | Sanz, Javier | Calvete-Sogo, Héctor | Elvira, Susana | Alonso, Rocío | Bermejo-Bermejo, Victoria
Ozone (O₃) critical levels have been established under the Long-Range Transboundary Air Pollution Convention to assess the risk of O₃ effects in European vegetation. A recent review study has led to the development of O₃ critical levels for annual Mediterranean pasture species using plants growing in well-watered pots at a coastal site and under low levels of competition. However, uncertainties remain in the extrapolation of the O₃ sensitivity of these species under natural conditions. The response of two O₃-sensitive annual Mediterranean pasture Trifolium species at the coastal site was compared with the response of the same species growing at a continental site, in natural soil and subject to water-stress and inter-specific competition, representing more closely their natural habitat. The slopes of exposure- and dose-response relationships derived for the two sites showed differences in the response to O₃ between sites attributed to differences in environmental growing conditions, growing medium and the level of inter-specific competition, but the effect of the individual factors could not be assessed separately. Dose-based O₃ indices partially explained differences due to environmental growing conditions between sites. The slopes showed that plants were more sensitive to O₃ at the continental site, but homogeneity of slopes tests revealed that results from both experimental sites may be combined. Although more experimental data considering complex inter-specific competition situations and the effect of important interactive factors such as nitrogen would be needed, these results confirm the validity of applying the current flux-based O₃ critical level under close to natural growing conditions. The AOT40-based O₃ critical level derived at the coastal site was also considered a suitable risk indicator in close to natural growing conditions in the absence of soil moisture limitations on plant growth.
Afficher plus [+] Moins [-]