Affiner votre recherche
Résultats 271-280 de 2,512
Long-term aging of a CeO2 based nanocomposite used for wood protection Texte intégral
2014
Auffan, Melanie | Masion, Armand | Labille, Jerome | Diot, Marie-Ange | Liu, Wei | Olivi, Luca | Proux, Olivier | Ziarelli, Fabio | Chaurand, Perrine | Geantet, Christophe | Bottero, Jean-Yves | Rose, Jerome
A multi-scale methodology was used to characterize the long-term behavior and chemical stability of a CeO2-based nanocomposite used as UV filter in wood stains. ATR-FTIR and 13C NMR demonstrated that the citrate coated chelates with Ce(IV) through its central carboxyl- and its α-hydroxyl- groups at the surface of the unaged nanocomposite. After 42 days under artificial daylight, the citrate completely disappeared and small amount of degradation products remained attached to the surface even after 112 days. Moreover, the release/desorption of the citrate layer led to a surface reorganization of the nano-sized CeO2 core observed by XANES (Ce L3-edge). Such a surface and structural transformation of the commercialized nanocomposite could have implications in term of fate, transport, and potential impacts towards the environment.
Afficher plus [+] Moins [-]Impacts of simulated drought on pore water chemistry of peatlands Texte intégral
2014
Juckers, Myra | Watmough, Shaun A.
Northern peatlands are increasingly threatened by climate change and industrial activities. This study examined the impact of simulated droughts on pore water chemistry at six peatlands in Sudbury, Ontario, that differ in copper (Cu), nickel (Ni) and cobalt (Co) contamination, including a site that had been previously limed. All sites responded similarly to simulated drought: pore water pH declined significantly following the 30 day drought and the decline was greater following the 60 day drought treatment. The decline in pore water pH was due to increasing sulphate concentrations, whereas nitrate increased more in the 60 day drought treatment. Decreases in pH were accompanied by large increases in Ni and Co that greatly exceeded provincial water quality guidelines. In contrast, dissolved organic carbon (DOC) concentrations decreased significantly following drought, along with concentrations of Cu and Al, which are strongly complexed by organic acids.
Afficher plus [+] Moins [-]Sorption affinities of sulfamethoxazole and carbamazepine to two sorbents under co-sorption systems Texte intégral
2014
Wang, Chi | Li, Hao | Liao, Shaohua | Zhang, Di | Wu, Min | Pan, Bo | Xing, Baoshan
The Kd of sulfamethoxazole (SMX) on activated carbon (AC) was larger than that of SMX on single-walled carbon nanotubes (SC), but the competition of SMX with carbamazepine (CBZ) for adsorption sites was weaker on AC than SC. Thus, a large Kd value does not necessarily reflect a high affinity. The analysis of the apparent sorption, competition, desorption hysteresis, and the sorption thermodynamics for SMX and CBZ did not provide sufficient information to distinguish their sorption affinities. The release of the adsorbed CBZ was not altered with SMX as the competitor, but SMX release increased significantly after CBZ addition. The higher sorption affinity of CBZ may be explained by the interactions of the CBZ benzene rings with the aromatic structures of the adsorbents. Although the thermodynamic meaning cannot be described, the release ratio of the adsorbed pollutants provides useful information for understanding pollutant sorption strength and associated risks.
Afficher plus [+] Moins [-]Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities Texte intégral
2014
Wang, Pei | Lü, Yonglong | Wang, Tieyu | Fu, Yaning | Zhu, Zhaoyun | Liu, Shijie | Xie, Shuangwei | Xiao, Yang | Giesy, John P.
Perfluoroalkyl acids (PFAAs) are emerging contaminants that have raised great concern in recent years. While PFAAs manufacturing becomes regulated in developed countries, production has been partly shifted to China. Eight fluoropolymer manufacturing facilities located in the South Bohai coastal region, one of the most populated areas of China, have been used to manufacture PFAA-related substances since 2001. The environmental consequence of the intensive production of PFAAs in this region remains largely unknown. We analyzed 17 PFAAs in twelve coastal rivers of this region, and found staggeringly high concentrations of perfluorooctanoic acid (PFOA) ranging from 0.96 to 4534.41 ng/L. The highest concentration was observed in the Xiaoqing River which received effluents from certain fluoropolymer facilities. Principal component analysis indicated similar sources of several perfluoroalkyl carboxylic acids (PFCAs) in all rivers, which indicated that atmospheric transport, wastewater treatment and surface runoff also acted as important supplements to direct discharge to surface water.
Afficher plus [+] Moins [-]Urban ecosystem modeling and global change: Potential for rational urban management and emissions mitigation Texte intégral
2014
Chen, Shaoqing | Chen, Bin | Fath, Brian D.
Urbanization is a strong and extensive driver that causes environmental pollution and climate change from local to global scale. Modeling cities as ecosystems has been initiated by a wide range of scientists as a key to addressing challenging problems concomitant with urbanization. In this paper, ‘urban ecosystem modeling (UEM)’ is defined in an inter-disciplinary context to acquire a broad perception of urban ecological properties and their interactions with global change. Furthermore, state-of-the-art models of urban ecosystems are reviewed, categorized as top-down models (including materials/energy-oriented models and structure-oriented models), bottom-up models (including land use-oriented models and infrastructure-oriented models), or hybrid models thereof. Based on the review of UEM studies, a future framework for explicit UEM is proposed based the integration of UEM approaches of different scales, guiding more rational urban management and efficient emissions mitigation.
Afficher plus [+] Moins [-]Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu Texte intégral
2014
Wakelin, Steven | Gerard, Emily | Black, Amanda | Hamonts, Kelly | Condron, Leo | Yuan, Tong | van Nostrand, Joy | Zhou, Jizhong | O'Callaghan, Maureen
Pollution induced community tolerance (PICT) to Cu2+, and co-tolerance to nanoparticulate Cu, ionic silver (Ag+), and vancomycin were measured in field soils treated with Cu2+ 15 years previously. EC50 values were determined using substrate induced respiration and correlations made against soil physicochemical properties, microbial community structure, physiological status (qCO2; metabolic quotient), and abundances of genes associated with metal and antibiotic resistance. Previous level of exposure to copper was directly (P < 0.05) associated with tolerance to addition of new Cu2+, and also of nanoparticle Cu. However, Cu-exposed communities had no co-tolerance to Ag+ and had increased susceptibly to vancomycin. Increased tolerance to both Cu correlated (P < 0.05) with increased metabolic quotient, potentially indicating that the community directed more energy towards cellular maintenance rather than biomass production. Neither bacterial or fungal community composition nor changes in the abundance of genes involved with metal resistance were related to PICT or co-tolerance mechanisms.
Afficher plus [+] Moins [-]A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China Texte intégral
2014
Song, Yizhi | Jiang, Bo | Tian, Sicong | Tang, Hui | Liu, Zengjun | Li, Chuan | Jia, Jianli | Huang, Wei E. | Zhang, Xu | Li, Guanghe
A whole-cell bacterial bioreporter Acinetobacter baylyi strain ADP1_recA_lux that responds to genotoxins was employed to directly assess the adverse effects of the bioavailable fraction of mitomycin C (MMC), benzo[a]pyrene (BaP), chromium (VI) and lead (II) in amended soils and soil samples from two fragile areas in China without soil pre-treatment. The amended soils containing pollutants with the concentrations as low as 0.4 mg/kg MMC, 0.5 mg/kg BaP, 520 mg/kg Cr (VI) and 2072 mg/kg Pb (II) were found to be toxic. Soil particle-associated pollutants accounted for 86%, 100%, 29%, and 92% of the genotoxicity in the MMC, BaP, Cr (VI), and Pb (II) amended soil, respectively. The soils from contaminated sites were also valid to be genotoxic. The results suggest both free and soil particle-associated pollutants are bioavailable to soil organisms and a solid-phase contact bioreporter assay to soil contamination could provide a rapid screening tool for environmental risk assessment.
Afficher plus [+] Moins [-]Dynamics and mitigation of six pesticides in a "Wet" forest buffer zone Texte intégral
2014
Passeport, Elodie | Richard, B. | Chaumont, Cédric | Margoum, C. | Liger, Lucie | Gril, J.J. | Tournebize, Julien | Hydrosystèmes et Bioprocédés (UR HBAN) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | UNIVERSITY OF TORONTO CAN ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU | International audience | Pesticide pollution is one of the main current threats on water quality. This paper presents the potential and functioning principles of a "Wet" forest buffer zone for reducing concentrations and loads of glyphosate, isoproturon, metazachlor, azoxystrobin, epoxiconazole, and cyproconazole. A tracer injection experiment was conducted in the field in a forest buffer zone at Bray (France). A fine time-scale sampling enabled to illustrate that interactions between pesticides and forest buffer substrates (soil and organic-rich litter layer), had a retarding effect on molecule transfer. Low concentrations were observed for all pesticides at the forest buffer outlet thus demonstrating the efficiency of "Wet" forest buffer zone for pesticide dissipation. Pesticide masses injected in the forest buffer inlet directly determined concentration peaks observed at the outlet. Rapid and partially reversible adsorption was likely the major process affecting pesticide transfer for short retention times (a few hours to a few days). Remobilization of metazachlor, isoproturon, desmethylisoproturon, and AMPA was observed when non-contaminated water flows passed through the forest buffer. Our data suggest that pesticide sorption properties alone could not explain the complex reaction mechanisms that affected pesticide transfer in the forest buffer. Nevertheless, the thick layer of organic matter litter on the top of the forest soil was a key parameter, which enhanced partially reversible sorption of pesticide, thus retarded their transfer, decreased concentration peaks, and likely increased degradation of the pesticides. Consequently, to limit pesticide pollution transported by surface water, the use of already existing forest areas as buffer zones should be equally considered as the most commonly implemented grass buffer strips.
Afficher plus [+] Moins [-]COP-compost: a software to study the degradation of organic pollutants in composts Texte intégral
2014
Zhang, Y. | Lashermes, Gwenaëlle | Houot, Sabine | Zhu, Y.G | Barriuso, Enrique | Garnier, Patricia | University of Science & Technology of China [Suzhou] | Fractionnement des AgroRessources et Environnement (FARE) ; Université de Reims Champagne-Ardenne (URCA)-Institut National de la Recherche Agronomique (INRA) | Environnement et Grandes Cultures (EGC) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Chinese Academy of Sciences [Changchun Branch] (CAS)
Composting has been demonstrated to be effective in degrading organic pollutants (OP) whose behaviour depends on the composting conditions, the microbial populations activated and interactions with organic matters. The fate of OP during composting involves complex mechanisms and models can be helpful tools for educational and scientific purposes, as well as for industrialists who want to optimise the composting process for OP elimination. A COP-Compost model, which couples an organic carbon (OC) module and an organic pollutant (OP) module and which simulates the changes of organic matter, organic pollutants and the microbial activities during the composting process, has been proposed and calibrated for a first set of OP in a previous study. The objectives of the present work were (1) to introduce the COP-Compost model from its convenient interface to a potential panel of users, (2) to show the variety of OP that could be simulated, including the possibility of choosing between degradation through co-metabolism or specific metabolism and (3) to show the effect of the initial characteristics of organic matter quality and its microbial biomass on the simulated results of the OP dynamic. In the model, we assumed that the pollutants can be adsorbed on organic matter according to the biochemical quality of the OC and that the microorganisms can degrade the pollutants at the same time as they degrade OC (by co-metabolism). A composting experiment describing two different 14C-labelled organic pollutants, simazine and pyrene, were chosen from the literature because the four OP fractions simulated in the model were measured during the study (the mineralised, soluble, sorbed and non-extractable fractions). Except for the mineralised fraction of simazine, a good agreement was achieved between the simulated and experimental results describing the evolution of the different organic fractions. For simazine, a specific biomass had to be added. To assess the relative importance of organic matter dynamics on the organic pollutants’ behaviour, a sensitivity analysis was conducted. The sensitivity analysis demonstrated that the parameters associated with organic matter dynamics and its initial microbial biomass greatly influenced the evolution of all the OP fractions, although the initial biochemical quality of the OC did not have a significant impact on the OP evolution
Afficher plus [+] Moins [-]Ant cuticular response to phthalate pollution Texte intégral
2014
Lenoir, Alain | Touchard, Axel | Devers, Séverine | Christidès, Jean-Philippe | Boulay, Raphaël | Cuvillier-Hot, Virginie | Institut de recherche sur la biologie de l'insecte (IRBI) ; Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS) | Ecologie des forêts de Guyane (ECOFOG) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université des Antilles et de la Guyane (UAG)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS) | Génétique et évolution des populations végétales (GEPV) ; Université de Lille, Sciences et Technologies-Centre National de la Recherche Scientifique (CNRS)
International audience | Phthalates are common atmospheric contaminantsused in the plastic industry. Ants have been shown to constitutegood bioindicators of phthalate pollution. Hence,phthalates remain trapped on ant cuticles which are mostlycoated with long-chain hydrocarbons. In this study, we artificiallycontaminated Lasius niger ants with four phthalates:dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), di(2-ethylhexyl) phthalate (DEHP), and benzyl butyl phthalate(BBP). The first three have previously been found on ants innature in Touraine (France), while the fourth has not. The fourphthalates disappeared rapidly (less than 5 days) from thecuticles of live ants. In contrast, on the cuticles of dead ants,DEHP quantities remained unchanged over time. These resultsindicate that phthalates are actively absorbed by thecuticles of live ants. Cuticular absorption of phthalates isnonspecific because eicosane, a nonnatural hydrocarbon onL. niger cuticle, was similarly absorbed. Ants are importantecological engineers and may serve as bioindicators of ecosystemhealth. We also suggest that ants and more generallyterrestrial arthropods may contribute to the removal ofphthalates from the local environment
Afficher plus [+] Moins [-]