Affiner votre recherche
Résultats 271-280 de 4,309
Influence of bacterial extracellular polymeric substances on the sorption of Zn on γ-alumina: A combination of FTIR and EXAFS studies Texte intégral
2017
Li, Cheng-Cheng | Wang, Yurun | Du, Huan | Cai, Peng | Peijnenburg, Willie J.G.M. | Zhou, Dong-Mei
Extracellular polymeric substances (EPS) isolated from bacteria, are abound of functional groups which can react with metals and consequently influence the immobilization of metals. In this study, we combined with Zn K-edge Extended X-ray Absorption Fine Structure (EXAFS), Fourier Transform Infrared (FTIR) spectroscopy, and High-Resolution Transmission Electron Microscopy (HRTEM) techniques to study the effects of EPS isolated from Bacillus subtilis and Pseudomonas putida on Zn sorption on γ-alumina. The results revealed that Zn sorption on aluminum oxide was pH-dependent and significantly influenced by bacterial EPS. At pH 7.5, Zn sorbed on γ-alumina was in the form of Zn-Al layered doubled hydroxide (LDH) precipitates, whereas at pH 5.5, Zn sorbed on γ-alumina was as a Zn-Al bidentate mononuclear surface complex. The amount of sorbed Zn at pH 7.5 was 1.3–3.7 times higher than that at pH 5.5. However, in the presence of 2 g L−1 EPS, regardless of pH conditions and EPS source, Zn + EPS + γ-alumina ternary complex was formed on the surface of γ-alumina, which resulted in decreased Zn sorption (reduced by 8.4–67.8%) at pH 7.5 and enhanced Zn sorption (increased by 10.0–124.7%) at pH 5.5. The FTIR and EXAFS spectra demonstrated that both the carboxyl and phosphoryl moieties of EPS were crucial in this process. These findings highlight EPS effects on Zn interacts with γ-alumina.
Afficher plus [+] Moins [-]Conservative tracer bromide inhibits pesticide mineralisation in soil Texte intégral
2017
Bech, Tina B. | Rosenbom, Annette E. | Sørensen, Sebastian R. | Jacobsen, Carsten S.
Bromide is a conservative tracer that is often applied with non-conservative solutes such as pesticides to estimate their retardation in the soil. It has been applied in concentrations of up to 250 g Br L−1, levels at which the growth of single-celled organisms can be inhibited. Bromide applications may therefore affect the biodegradation of non-conservative solutes in soil.The present study investigated the effect of potassium bromide (KBr) on the mineralisation of three pesticides – glyphosate, MCPA and metribuzin – in four agricultural A-horizon soils. KBr was added to soil microcosms at concentrations of 0, 0.5, 2.5 and 5 g Br− L−1 in the soil solution. The study concluded that KBr had a negative effect on pesticide mineralisation. The inhibitory effect varied depending on the KBr concentration, the type of pesticide and the type of soil. Furthermore, 16 S amplicon sequencing revealed that the KBr treatment generally reduced the abundance of bacteroidetes and proteobacteria on both an RNA and DNA level.Therefore, in order to reduce the effect of KBr on the soil bacterial community and consequently also on xenobiotic degradation, it is recommended that KBr be applied in a concentration that does not exceed 0.5 g Br− L−1 in the soil water.
Afficher plus [+] Moins [-]Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles Texte intégral
2017
Formentini, Thiago Augusto | Legros, Samuel | Fernandes, Cristovão Vicente Scapulatempo | Pinheiro, Adilson | Le Bars, Maureen | Levard, Clément | Mallmann, Fábio Joel Kochem | da Veiga, Milton | Doelsch, Emmanuel
Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles Texte intégral
2017
Formentini, Thiago Augusto | Legros, Samuel | Fernandes, Cristovão Vicente Scapulatempo | Pinheiro, Adilson | Le Bars, Maureen | Levard, Clément | Mallmann, Fábio Joel Kochem | da Veiga, Milton | Doelsch, Emmanuel
Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments.
Afficher plus [+] Moins [-]Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles Texte intégral
2017
Formentini T.A. | Legros S. | Fernandes C.V.S. | Pinheiro A. | Le Bars M. | Levard C. | Mallmann F.J.K. | Da Veiga M. | Doelsch E.
Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-?m diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments. (Résumé d'auteur)
Afficher plus [+] Moins [-]Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles Texte intégral
2017
Formentini, Thiago Augusto | Legros, Samuel | Fernandes, Cristovão Vicente Scapulatempo | Pinheiro, Adilson | Bars, Maureen Le | Levard, Clément | Mallmann, Fábio Joel Kochem | Veiga, Milton, Da | Doelsch, Emmanuel | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Recyclage et risque (UPR Recyclage et risque) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
International audience | Abstract Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and \XAS\ analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and \XAS\ observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments.
Afficher plus [+] Moins [-]Comparing emissions from a cattle pen as measured by two micrometeorological techniques Texte intégral
2017
Bai, Mei | Sun, Jianlei | Denmead, Owen T. | Chen, Deli
Accurate measurement of ammonia (NH3) emissions from livestock pens is challenging. Two micrometeorological techniques, the integrated horizontal flux (IHF) and the backward Lagrangian stochastic (bLS) dispersion technique were used to measure NH3 emissions from an isolated cattle pen (20 × 20 m) in Victoria, Australia. The bLS technique is simple and insensitive to the presence of animals, but typically gives discontinuous measurements due to the need for target wind directions and wind conditions above accepted thresholds. In contrast, the IHF technique as implemented here gives near-continuous measurements with no restriction on wind directions. However, IHF needs more complex field measurements, and there are ambiguities when applied to an animal pen due to the presence of animals. Over the 29 days of our experiment, we collected 124 coincidental bLS and IHF emission measurements from the pen (30−min each). We found no statistical difference in the bLS and IHF calculations when the IHF turbulent flux correction factor (TFcor) was set to 15%. Our results confirm that the IHF and bLS techniques, using independent sensors and having very different equipment layouts, gives nearly equivalent results. This suggests the choice of the two methods in future experiments can focus on their different strengths and weaknesses.
Afficher plus [+] Moins [-]Review of contamination of sewage sludge and amended soils by polybrominated diphenyl ethers based on meta-analysis Texte intégral
2017
Kim, Minhee | Li, Loretta Y. | Gorgy, Tamer | Grace, John R.
Polybrominated diphenyl ethers (PBDEs) are still present in sewage sludge and sludge-amended soil, even though commercial PBDEs were prohibited or voluntarily phased out several years ago. In this study, levels and compositional profiles of seven major PBDE congeners in sludge are assessed in relation to their usage patterns in commercial products, and years of being banned and phased out in North America, Europe, and Asia. Annual accumulations and future long-term changes of PBDE in sludge-amended soil are estimated. BDE-209 has the highest concentration, followed by BDE-99 and BDE-47. The highest concentrations, up to 23,500 ng g−1, of PBDEs in sludge were found in North America until 2004–2007, whereas since then sludge PBDE concentrations, up to 6600 ng g−1 have been higher in Asia than on the other two continents. The amount of sludge applied and the soil organic matter content play important roles in determining PBDE concentrations in sludge-amended soil. The estimated concentrations of BDE-47, -99, and -209 in soils receiving sludge applications during the past 15 years are 40–300 times higher than in soils after the initial sludge application. The accumulated concentrations of BDE-47 and BDE-99 are expected to decrease by 99% between 2016 and 2100, whereas the decrease in the BDE-209 concentration is predicted to be approximately 87%.
Afficher plus [+] Moins [-]Emission factors of unintentional HCB and PeCBz and their correlation with PCDD/PCDF Texte intégral
2017
Gong, Wenwen | Fiedler, H. (Heidelore) | Liu, Xiaotu | Wang, Bin | Yu, Gang
Hexachlorobenzene (HCB) and pentachlorobenzene (PeCBz) have been listed as unintentional POPs in the annex of the Stockholm Convention and thus, attracted attention by government and researchers. Since the intentional production and use has ceased in most countries, the unintentional releases to the environment have increased. This study gathered 206 and 78 emission factors (EFs) of unintentional HCB and PeCBz from scientific publications and governmental reports, respectively. Most of the EFs referred to the release vector “air” (EFAir) and to a less extent to “product” (EFProduct). EFs were proposed for different source categories/classes used in the Toolkit according to the technologies that released the HCB or PeCBz. Overall, lowest and highest EFAir for HCB were found in the metallurgical industry range from 1 μg/t in well controlled plants (coke, iron and steel) up to 40,000 μg/t (secondary zinc). EFs for PeCBz were in similar order of magnitude. Due to lack of data, EFs to water, land or residue cannot be proposed. Using linear regression and statistical analysis such as Pearson correlation, we found strongest correlation of EFAir between HCB and PeCBz (R2 = 0.79, P < 0.01) and weaker, but still significant, correlations for EFAir between PCDD/PCDFTEQ and HCB (R2 = 0.56; P < 0.01) or PeCBz (R2 = 0.31 P < 0.01) for various thermal processes.
Afficher plus [+] Moins [-]Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish Texte intégral
2017
Muggelberg, Leslie L. | Huff Hartz, Kara E. | Nutile, Samuel A. | Harwood, Amanda D. | Heim, Jennifer R. | Derby, Andrew P. | Weston, Donald P. | Lydy, Michael J.
The recent discovery of pyrethroid-resistant Hyalella azteca populations in California, USA suggests there has been significant exposure of aquatic organisms to these terrestrially-applied insecticides. Since resistant organisms are able to survive in relatively contaminated habitats they may experience greater pyrethroid bioaccumulation, subsequently increasing the risk of those compounds transferring to predators. These issues were evaluated in the current study following toxicity tests in water with permethrin which showed the 96-h LC50 of resistant H. azteca (1670 ng L⁻¹) was 53 times higher than that of non-resistant H. azteca (31.2 ng L⁻¹). Bioaccumulation was compared between resistant and non-resistant H. azteca by exposing both populations to permethrin in water and then measuring the tissue concentrations attained. Our results indicate that resistant and non-resistant H. azteca have similar potential to bioaccumulate pyrethroids at the same exposure concentration. However, significantly greater bioaccumulation occurs in resistant H. azteca at exposure concentrations non-resistant organisms cannot survive. To assess the risk of pyrethroid trophic transfer, permethrin-dosed resistant H. azteca were fed to fathead minnows (Pimephales promelas) for four days, after which bioaccumulation of permethrin and its biotransformation products in fish tissues were measured. There were detectable concentrations of permethrin in fish tissues after they consumed dosed resistant H. azteca. These results show that bioaccumulation potential is greater in organisms with pyrethroid resistance and this increases the risk of trophic transfer when consumed by a predator. The implications of this study extend to individual fitness, populations and food webs.
Afficher plus [+] Moins [-]Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils Texte intégral
2017
Chen, Baowei | He, Rong | Yuan, Ke | Chen, Enzhong | Lin, Lan | Chen, Xin | Sha, Sha | Zhong, Jianan | Lin, Li | Yang, Lihua | Yang, Ying | Wang, Xiaowei | Zou, Shichun | Luan, Tiangang
The prevalence of antibiotic resistance genes (ARGs) in modern environment raises an emerging global health concern. In this study, soil samples were collected from three sites in petrochemical plant that represented different pollution levels of polycyclic aromatic hydrocarbons (PAHs). Metagenomic profiling of these soils demonstrated that ARGs in the PAHs-contaminated soils were approximately 15 times more abundant than those in the less-contaminated ones, with Proteobacterial being the preponderant phylum. Resistance profile of ARGs in the PAHs-polluted soils was characterized by the dominance of efflux pump-encoding ARGs associated with aromatic antibiotics (e.g., fluoroquinolones and acriflavine) that accounted for more than 70% of the total ARGs, which was significantly different from representative sources of ARG pollution due to wide use of antibiotics. Most of ARGs enriched in the PAHs-contaminated soils were not carried by plasmids, indicating the low possibilities of them being transferred between bacteria. Significant correlation was observed between the total abundance of ARGs and that of Proteobacteria in the soils. Proteobacteria selected by PAHs led to simultaneously enriching of ARGs carried by them in the soils. Our results suggested that PAHs could serve as one of selective stresses for greatly enriching of ARGs in the human-impacted environment.
Afficher plus [+] Moins [-]Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce Texte intégral
2017
Duan, Manli | Li, Haichao | Gu, Jie | Tuo, Xiaxia | Sun, Wei | Qian, Xun | Wang, Xiaojuan
Antibiotics and antibiotic resistance genes (ARGs) in soil can affect human health via the food chain. Biochar is a soil amendment but its impacts on ARGs and the microbial communities associated with soil and vegetables are unclear. Therefore, we established three lettuce pot culture experiments, i.e., O300: 300 mg/kg oxytetracycline (OTC), BO300: 300 mg/kg OTC + 2% biochar, and a control without OTC or biochar. We found that under BO300, the relative abundances of ARGs were reduced by 51.8%, 43.4%, and 44.1% in lettuce leaves, roots, and soil, respectively, compared with O300. intI1 was highly abundant in soil and lettuce, and it co-occurred with some ARGs (tetW, ermF, and sul1). Redundancy analysis and network analysis indicated that the bacterial community succession was the main mechanism that affected the variations in ARGs and intI1. The reduction of Firmicutes due to the biochar treatment of soil and lettuce was the main factor responsible for the removal of tetracycline resistance genes in leaves. Biochar application led to the disappearance of human pathogenic bacteria (HPB), which was significantly correlated with the abundances of ermF and ermX. In summary, biochar is an effective farmland amendment for reducing the abundances of antibiotics, ARGs, and HPB in order to ensure the safety of vegetables and protect human health.
Afficher plus [+] Moins [-]Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed Texte intégral
2017
Ji, Xiaoliang | Xie, Runting | Hao, Yun | Lu, Jun
Quantitative identification of nitrate (NO3−-N) sources is critical to the control of nonpoint source nitrogen pollution in an agricultural watershed. Combined with water quality monitoring, we adopted the environmental isotope (δD-H2O, δ18O-H2O, δ15N-NO3−, and δ18O-NO3−) analysis and the Markov Chain Monte Carlo (MCMC) mixing model to determine the proportions of riverine NO3−-N inputs from four potential NO3−-N sources, namely, atmospheric deposition (AD), chemical nitrogen fertilizer (NF), soil nitrogen (SN), and manure and sewage (M&S), in the ChangLe River watershed of eastern China. Results showed that NO3−-N was the main form of nitrogen in this watershed, accounting for approximately 74% of the total nitrogen concentration. A strong hydraulic interaction existed between the surface and groundwater for NO3−-N pollution. The variations of the isotopic composition in NO3−-N suggested that microbial nitrification was the dominant nitrogen transformation process in surface water, whereas significant denitrification was observed in groundwater. MCMC mixing model outputs revealed that M&S was the predominant contributor to riverine NO3−-N pollution (contributing 41.8% on average), followed by SN (34.0%), NF (21.9%), and AD (2.3%) sources. Finally, we constructed an uncertainty index, UI90, to quantitatively characterize the uncertainties inherent in NO3−-N source apportionment and discussed the reasons behind the uncertainties.
Afficher plus [+] Moins [-]