Affiner votre recherche
Résultats 271-280 de 4,937
Genotoxicological analyses of insectivorous bats (Mammalia: Chiroptera) in central Brazil: The oral epithelium as an indicator of environmental quality Texte intégral
2019
Benvindo-Souza, Marcelino | Borges, Rinneu Elias | Pacheco, Susi Missel | Santos, Lia Raquel de Souza
The micronucleus (MN) test of the human buccal mucosa was developed more than 30 years ago, although this technique has only recently been applied to wild mammals. This paper presents a pioneering study in the genotoxicological evaluation of the exfoliated cells of the buccal mucosa of bats. The assay was applied to two insectivorous bat species (Noctilio albiventris and Pteronotus parnellii) sampled in riparian corridors located in the city of Palmas (capital of the Brazilian state of Tocantins), with the results being compared with those obtained for a third insectivorous species (Nyctinomops laticaudatus), which has established a colony under a road bridge in the same region. This colony represents one of the largest molossidae populations ever recorded in Brazil. A significantly higher frequency of micronuclei was recorded in this colony, as well as a number of other nuclear abnormalities, including binucleated cells, cells with condensed chromatin and karyolysis, in comparison with the bats from the riparian corridors, indicating that the bats from the bridge colony are more susceptible to genotoxic damage. Thus, it is demonstrated the importance of the biomarker (MN) for use in wild animals and allows to conclude that colony bats are more susceptible to genotoxic damages.
Afficher plus [+] Moins [-]Trace metals in polyethylene debris from the North Atlantic subtropical gyre Texte intégral
2019
Prunier, Jonathan | Maurice, Laurence | Perez, Emile | Gigault, Julien | Pierson Wickmann, Anne-Catherine | Davranche, Mélanie | Halle, Alexandra ter
Plastic pollution in the marine environment poses threats to wildlife and habitats through varied mechanisms, among which are the transport and transfer to the food web of hazardous substances. Still, very little is known about the metal content of plastic debris and about sorption/desorption processes, especially with respect to weathering. In this study, plastic debris collected from the North Atlantic subtropical gyre was analyzed for trace metals; as a comparison, new packaging materials were also analyzed. Both the new items and plastic debris showed very scattered concentrations. The new items contained significant amounts of trace metals introduced as additives, but globally, metal concentrations were higher in the plastic debris. The results provide evidence that enhanced metal concentrations increase with the plastic state of oxidation for some elements, such as As, Ti, Ni, and Cd. Transmission electron microscopy showed the presence of mineral particles on the surface of the plastic debris. This work demonstrates that marine plastic debris carries complex mixtures of heavy metals. Such materials not only behave as a source of metals resulting from intrinsic plastic additives but also are able to concentrate metals from ocean water as mineral nanoparticles or adsorbed species.
Afficher plus [+] Moins [-]Supported-liquid phase extraction in combination with isotope-dilution gas chromatography triple quadrupole tandem mass spectrometry for high-throughput quantitative analysis of polycyclic aromatic hydrocarbon metabolites in urine Texte intégral
2019
Jiang, Jie | Ip, Ho Sai Simon | Zhou, Junqiang | Guan, Yufeng | Zhang, Jianqing | Liu, Guihua | Garrotto, Natalia | Lu, Yifu | DeGuzman, Josephine | She, Jianwen
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants with a number of them being carcinogenic. One of the approaches to assess human exposure to PAHs is to measure their urinary metabolites, monohydroxyl polycyclic aromatic hydrocarbons (OH-PAHs), with a method allowing for high throughput and short turn-around time. We developed a method to quantify nine urinary OH-PAHs by using supported liquid phase extraction (SLE) and isotope dilution gas chromatography tandem mass spectrometry (GC-MS/MS). SLE demonstrated advantages over the traditionally used liquid-liquid extraction techniques. The target analytes with spiked deuterated and ¹³C-labeled internal standards were extracted from urine by SLE after enzymatic cleavage of the glucuronide and sulfate conjugates. The extracted analytes were then derivatized with N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), and analyzed by GC-MS/MS. Six solvent mixtures were evaluated as the SLE extraction solvent, and pentane:chloroform (7:3, v/v) was selected due to its best overall analytical performance. Method detection limits for the 9 analytes ranged from 2.3 to 13.8 pg/mL. Precision and accuracy were satisfactory. SLE and internal isotope labeled standard combination reduced matrix effect effectively. This new method using SLE sample preparation techniques coupled with GC-MS/MS proves applicable to urinary measurements for PAH exposure studies for general population.
Afficher plus [+] Moins [-]Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran Texte intégral
2019
Abbasi, Sajjad | Keshavarzi, Behnam | Moore, Farid | Turner, Andrew | Kelly, Frank J. | Dominguez, Ana Oliete | Jaafarzadeh, Neemat
While the distribution and effects of microplastics (MPs) have been extensively studied in aquatic systems, there exits little information on their occurrence in the terrestrial environment and their potential impacts on human health. In the present study, street dust and suspended dust were collected from the city and county of Asaluyeh, Iran. Samples were characterized by various microscopic techniques (fluorescence, polarized light, SEM) in order to quantify and classify MPs and microrubbers (MRs) in the urban and industrial environments that are potentially ingestible or inhalable by humans. In < 5-mm street dust retrieved from 15 sites, there were an average of 900 MPs and 250 MRs per 15 g of sample, with MPs exhibiting a range of colours and sizes (<100 to >1000 μm). Most street dust samples were dominated by spherical and film-like particles and MRs largely made up of different sizes of black fragments and fibrous particulates. Airborne dust collected daily over an eight-day period at two locations revealed the ubiquity of fibrous MPs of sizes ranging from about 2 μm to 100 μm and an abundance of about 1 per m⁻³. These samples contained small MR fragments whose precise characteristics were more difficult to define. Based on the median concentrations in street dust, estimates of acute exposure through ingestion are about 5 and 15 MP d⁻¹ and 2 and 7 MR d⁻¹ for construction workers and young children, respectively. Quantities of inhalable particulates were more difficult to define but the potential toxicity of MPs and MRs taken in by this route was evaluated from assays performed using particulates isolated from street dusts in the presence of an artificial lung fluid. Both types of particle exhibited oxidative potential, with MPs displaying consumptions of different antioxidants that were comparable with corresponding values for a reference urban particulate dust but lower than those for London ambient particulate matter. Thus, MPs and MRs contribute towards the health impacts of urban and industrial dusts but their precise roles remain unclear and warrant further study.
Afficher plus [+] Moins [-]Spatial and temporal distribution of organophosphate esters in the atmosphere of the Beijing-Tianjin-Hebei region, China Texte intégral
2019
Zhang, Weiwei | Wang, Pu | Li, Yingming | Wang, Dou | Matsiko, Julius | Yang, Ruiqiang | Sun, Huizhong | Hao, Yanfen | Zhang, Qinghua | Jiang, Guibin
High volume air samples were collected from April 2016 to March 2017 at five locations across the Beijing-Tianjin-Hebei (BTH) region, to investigate the atmospheric occurrence of organophosphate esters (OPEs). The mean atmospheric concentrations of ∑₈OPEs (gas and particle phases) varied from 531 ± 393 pg/m³ to 2180 ± 1490 pg/m³ with the highest level observed at the urban sampling site in Tianjin City. ∑₈OPEs were predominated by the chlorinated OPEs (TCEP, TCPP, and TDCIPP), which accounted for 60% ± 16% of the OPE concentrations across the BTH region. Generally, higher levels of gaseous OPEs were found in summer, while higher levels of particle-bound OPEs were observed in winter. The concentrations of gaseous OPEs were positively and significantly correlated with local temperatures (p < 0.05) and relative humidity (p < 0.01), while significantly positive correlations were found between concentrations of particle-bound OPEs and total suspended particulates (TSP) (p < 0.01). These findings confirmed that temperatures, relative humidity and levels of TSP are the main drivers for OPE distributions in different seasons and areas. Gas/particle partitioning of OPEs was also investigated based on the absorption-partitioning model (octanol–air partitioning coefficient (Kₒₐ) -based model) and Junge–Pankow adsorption-partitioning model (J-P model). Kₒₐ-based model generally showed a better performance in comparison with the measured results. The assessment of inhalation exposure risks indicated that relatively higher exposure risks were found in the urban areas, in particular, in Tianjin City (a median value of the estimated daily intake (EDI) of 106 pg/kg body weight/day), suggesting that more attention should be drawn to OPE distributions in the heavily industrialized megacities.
Afficher plus [+] Moins [-]Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba Texte intégral
2019
Jiang, Xiaofeng | Chen, Hao | Liao, Yuanchen | Ye, Ziqi | Li, Mei | Klobučar, Göran
Nano- and microplastics have been widely spread in environmental matrices, especially in marine and terrestrial systems. In this study, higher plant Vicia faba root tips were exposed to 5 μm and 100 nm with 10, 50 and 100 mg/L polystyrene fluorescent microplastics (PS-MPs) for 48 h. Root length, weight, oxidative stress and genotoxicity of V. faba were assessed to investigate toxic effects of PS-MPs. The results showed that the biomass and catalase (CAT) enzymes activity of V. faba roots decreased under 5 μm PS-MPs whereas superoxide dismutase (SOD) and peroxidase (POD) enzymes activity significantly increased. Under the 100 nm PS-MPs exposure a significant decrease of growth was observed only at the highest concentration (100 mg/L). However, micronucleus (MN) test and antioxidative enzymes activities showed that 100 nm PS-MPs induce higher genotoxic and oxidative damage to V. faba than 5 μm PS-MPs. Furthermore, the laser confocal scanning microscopy (LCSM) demonstrated that 100 nm PS-MPs can accumulate in V. faba root and most probably block cell connections or cell wall pores for transport of nutrients. These findings provide a new insight into the toxic effects of microplastics on V. faba, and further apply to the ecological risk assessment of microplastics on higher plants.
Afficher plus [+] Moins [-]Multivariate spatial patterns of ambient PM2.5 elemental concentrations in Eastern Massachusetts Texte intégral
2019
Requia, Weeberb J. | Coull, Brent A. | Koutrakis, Petros
Understanding the factors that affect spatial differences in PM2.5 composition is crucial for implementing emissions control and health policies. Although previous studies have explored modeling of spatial patterns as a tool to improve human exposure assessment, little work has employed a multivariate clustering approach to identify spatial patterns in particle composition. In this study, we used this approach to assess the spatial patterns of ambient PM2.5 elemental concentrations in Eastern Massachusetts in the United States. To distinguish one cluster of sites from another, we considered air pollution sources and geodemographic variables. We evaluated spatial patterns for 11 elemental components of ambient PM2.5, which included S, K, Ca, Fe, Zn, Cu, Ti, Al, Pb, V, and Ni. The analyses for S, Ca, Cu, Ti, Al, and Pb resulted in: 2 clusters for Fe, Zn, V, and Ni; 3 clusters; and for 12 clusters for K. Overall, our findings suggest substantial variation of clusters among PM2.5 components. In addition, land use, population density, and daily traffic were used as variables to more effectively characterize clusters of sites. We used R2 values to estimate the effectiveness of each variable in characterizing clusters. Larger R2 values indicate better the discrimination among the sites. For example, population density had the highest R2 value when the analysis was performed for S, Ca, Zn, Ti, Al, Pb, and V; land use presented the highest R2 value for Cu, V, and Ni; and, traffic showed the highest R2 value for PM2.5 mass concentration. This study improves the ability to model both the between- and within-area variability of source emissions and pollution regime, using concentrations of PM2.5 components.
Afficher plus [+] Moins [-]Sex-specific associations of autism spectrum disorder with residential air pollution exposure in a large Southern California pregnancy cohort Texte intégral
2019
Jo, Heejoo | Eckel, Sandrah P. | Wang, Xinhui | Chen, Jiu-Chiuan | Cockburn, Myles | Martinez, Mayra P. | Chow, Ting | Molshatzki, Noa | Lurmann, Frederick W. | Funk, William E. | Xiang, Anny H. | McConnell, Rob
Autism spectrum disorder (ASD) affects more boys than girls. Recent animal studies found that early life exposure to ambient particles caused autism-like behaviors only in males. However, there has been little study of sex-specificity of effects on ASD in humans. We evaluated ASD risk associated with prenatal and first year of life exposures to particulate matter less than 2.5 μm in aerodynamic diameter (PM₂.₅) by child sex. This retrospective cohort study included 246,420 singleton children born in Kaiser Permanente Southern California (KPSC) hospitals between 1999 and 2009. The cohort was followed from birth through age five to identify 2471 ASD cases from the electronic medical record. Ambient PM₂.₅ and other regional air pollution measurements (PM less than 10 μm, ozone, nitrogen dioxide) from regulatory air monitoring stations were interpolated to estimate exposure during each trimester and first year of life at each geocoded birth address. Hazard ratios (HRs) were estimated using Cox regression models to adjust for birth year, KPSC medical center service areas, and relevant maternal and child characteristics. Adjusted HRs per 6.5 μg/m³ PM₂.₅ were elevated during entire pregnancy [1.17 (95% confidence interval (CI), 1.04–1.33)]; first trimester [1.10 (95% CI, 1.02–1.19)]; third trimester [1.08 (1.00–1.18)]; and first year of life [1.21 (95% CI, 1.05–1.40)]. Only the first trimester association remained robust to adjustment for other exposure windows, and was specific to boys only (HR = 1.18; 95% CI, 1.08–1.27); there was no association in girls (HR = 0.90; 95% CI, 0.76–1.07; interaction p-value 0.03). There were no statistically significant associations with other pollutants. PM₂.₅-associated ASD risk was stronger in boys, consistent with findings from recent animal studies. Further studies are needed to better understand these sexually dimorphic neurodevelopmental associations.
Afficher plus [+] Moins [-]The effects of prosperity indices and land use indicators of an urban conurbation on the occurrence of hexabromocyclododecanes and tetrabromobisphenol A in surface soil in South China Texte intégral
2019
Gao, Chong-Jing | Xia, Lin-Lin | Wu, Chen-Chou | Wong, Charles S. | Guo, Ying
Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) are legacy brominated flame retardants which are still produced and used in China. In this study, 187 surface soils from the Pearl River Delta (PRD) urban conurbation in China were collected, and the effects of urban conurbation development on the concentrations, distributions and human exposure risk of HBCDs and TBBPA were investigated. The concentration ranges of Σ3HBCD (sum of α-, β-, and γ-HBCD) and TBBPA in soil were below the limit of quantification (<LOQ) to 300 ng g−1 dry weight (dw) and < LOQ to 53.1 ng g−1 dw, respectively. Concentration levels of HBCDs and TBBPA in the PRD were affected both by distributions of land-use type and by the location of the city. Soils from residential areas contained the highest concentrations of Σ3HBCD (median: 1.75 ng g−1 dw) and TBBPA (1.92 ng g−1 dw) among all land-use types. In addition, soils from the central PRD had higher Σ3HBCD and TBBPA levels (0.46 and 0.90 ng g−1 dw) than those from the surrounding areas (0.17 and 0.07 ng g−1 dw). The concentrations of Σ3HBCD and TBBPA were highly correlated with urbanization level, population density, regional GDP and per capita income in all cities studied (p < 0.01), which indicates that the prosperity of the urban conurbation may play an important role in soil contamination of HBCDs and TBBPA in the PRD. Children living in residential areas had the highest estimated daily intakes of Σ3HBCD (7.09 pg kg−1 d−1) and TBBPA (7.76 pg kg−1 d−1), suggesting that people living in residential areas have a relatively higher exposure risk of HBCDs and TBBPA. This is a comprehensive study to report the effects of prosperity indices and land use indicators of an urban conurbation on the occurrence of HBCDs and TBBPA in soil in China.
Afficher plus [+] Moins [-]PAHs increase the production of extracellular vesicles both in vitro in endothelial cells and in vivo in urines from rats Texte intégral
2019
Le Goff, Manon | Lagadic-Gossmann, Dominique | Latour, Remi | Podechard, Normand | Grova, Nathalie | Gauffre, Fabienne | Chevance, Soizic | Burel, Agnès | Appenzeller, Brice M.R. | Ulmann, Lionel | Sergent, Odile | Le Ferrec, Eric
Environmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects.Extracellular vesicles (EVs), including small extracellular vesicles (S-EVs or exosomes) and large extracellular vesicles (L-EVs or microvesicles), are delivery systems for multimolecular messages related to the nature and status of the originating cells. Because they are produced by all cells and detected within body fluids, EV releases could act as cell responses and thereby serve as biomarkers.To test whether EVs can serve as biomarkers of PAHs exposure, we evaluate the effects of these pollutants on EV production using an in vitro approach (human endothelial cell line, HMEC-1) and an in vivo approach (urine samples from PAHs-exposed rats). Our study indicates that, i) PAH exposure increases in vitro the EV production by endothelial cells and in vivo the release of EVs in urine, and that the stimulating effects of PAHs concern both S-EVs and L-EVs; ii) PAH exposure and more particularly exposure to B[a]P, can influence the composition of exosomes produced by endothelial cells; iii) the aryl hydrocarbon receptor, a cytosolic receptor associated to most deleterious effects of PAHs, would be involved in the PAH effects on the release of S-EVs, but not L-EVs.These results suggest that EVs may have utility for monitoring exposure to PAHs, and more particularly to B[a]P, considered as reference PAH, and to detect the related early cellular response prior to end-organ damages.
Afficher plus [+] Moins [-]