Affiner votre recherche
Résultats 2711-2720 de 4,043
Distribution and risk assessment of metals and arsenic contamination in man-made ditch sediments with different land use types Texte intégral
2016
Nsenga Kumwimba, Mathieu | Zhu, Bo | Wang, Tao | Muyembe, Diana Kavidia
Ditches are subjected to a large input of nutrients, trace metals, and arsenic and the enhancement of sedimentation due to human activities. However, the influence of different types of land uses on the distribution and associated environmental risk of metals and arsenic in the Red purple Sichuan Basin remains largely unclear, which is needed for water management. This study was carried out to characterize metal/metalloid status in ditch sediments from different land uses. A total of 68 surface sediment samples (0–5 cm) were collected from open ditches distributed in different land use types, i.e., cultivated ditches (CD), barren land ditches (BLD), roadside ditches (RSD), and residential ditches (RD), within the Sichuan Basin. Mean concentrations of Cr, Ni, Cu, Zn, Cd, Pb, and Mn in both RD and RSD were above the soil background values of Sichuan Basin, but Cd in ditch sediments of the basin posed considerable ecological risk to the environment. Overall, metals/metalloid (except Pb) decreased in the following order of RD > RSD > BLD > CD. Of the different land use types in the hilly region, residential and roadside land uses were likely to adverse effects on aquatic life. Multivariate statistical analysis showed that Mn, As, Cu, Ni, Zn, Fe, and Al were mainly influenced by natural weathering (erosion), while Pb might come from heavy vehicular traffic. The degree of contamination (Md), enrichment factor (EF), and the geo-accumulation index (Igeo) showed that Cd causes strong sediment pollution in the basin. Sediment quality guidelines SQG-Q values displayed that metals and arsenic created medium-low potential of adverse biological effects. These results provide baseline information on the metals and arsenic pollution in the Sichuan Basin. Awareness of land use type contributions to metals and arsenic requires that these man-made ditches be considered for their mitigation of pollutants in this region.
Afficher plus [+] Moins [-]Core-shell Fe3O4@MIL-101(Fe) composites as heterogeneous catalysts of persulfate activation for the removal of Acid Orange 7 Texte intégral
2016
Yue, Xinxin | Guo, Weilin | Li, Xianghui | Zhou, Haihong | Wang, Ruiqin
In this study, a novel core-shell Fe₃O₄@MIL-101 (MIL stands for Materials of Institute Lavoisier) composite was successfully synthesized by hydrothermal method and was fully characterized by X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectra, and X-ray photoelectron spectroscopy. The composite was introduced as a catalyst to generate powerful radicals from persulfate for the removal of Acid Orange 7 in an aqueous solution. Effects of the central metal ions of MIL-101, amino group content of MIL-101, and pH were evaluated in batch experiments. It was found that both hydroxyl and sulfate radicals were generated; importantly, sulfate radicals were speculated to serve as the dominant active species in the catalytic oxidation of Acid Orange 7. In addition, a possible mechanism was proposed. This study provides new physical insights for the rational design of advanced metal-organic frameworks (MOF)-based catalysts for improved environmental remediation.
Afficher plus [+] Moins [-]Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans: characteristics and applicability in flue gas CO2 sequestration Texte intégral
2016
Faridi, Shazia | Satyanarayana, T.
The emissions of CO₂ into the atmosphere have been constantly rising due to anthropogenic activities, which have led to global warming and climate change. Among various methods proposed for mitigating CO₂ levels in the atmosphere, carbonic anhydrase (CA)-mediated carbon sequestration represents a greener and safer approach to capture and convert it into stable mineral carbonates. Despite the fact that CA is an extremely efficient metalloenzyme that catalyzes the hydration of CO₂ (CO₂ + H₂O ↔ HCO₃ ⁻ + H⁺) with a kcat of ∼10⁶ s⁻¹, a thermostable, and alkalistable CA is desirable for the process to take place efficiently. The purified CA from alkaliphilic, moderately thermophilic, and halotolerant Bacillus halodurans TSLV1 (BhCA) is a homodimeric enzyme with a subunit molecular mass of ~37 kDa with stability in a broad pH range between 6.0 and 11.0. It has a moderate thermostability with a T₁/₂ of 24.0 ± 1.0 min at 60 °C. Based on the sensitivity of CA to specific inhibitors, BhCA is an α-CA; this has been confirmed by nucleotide/amino acid sequence analysis. This has a unique property of stimulation by SO₄ ²⁻, and it remains unaffected by SO₃ ²⁻, NOx, and most other components present in the flue gas. BhCA is highly efficient in accelerating the mineralization of CO₂ as compared to commercial bovine carbonic anhydrase (BCA) and is also efficient in the sequestration of CO₂ from the exhaust of petrol driven car, thus, a useful biocatalyst for sequestering CO₂ from flue gas.
Afficher plus [+] Moins [-]Improvement of the environmental and operational characteristics of vehicles through decreasing the motor fuel density Texte intégral
2016
Magaril, Elena
The environmental and operational characteristics of motor transport, one of the main consumers of motor fuel and source of toxic emissions, soot, and greenhouse gases, are determined to a large extent by the fuel quality which is characterized by many parameters. Fuel density is one of these parameters and it can serve as an indicator of fuel quality. It has been theoretically substantiated that an increased density of motor fuel has a negative impact both on the environmental and operational characteristics of motor transport. The use of fuels with a high density leads to an increase in carbonization within the engine, adversely affecting the vehicle performance and increasing environmental pollution. A program of technological measures targeted at reducing the density of the fuel used was offered. It includes a solution to the problem posed by changes in the refining capacities ratio and the temperature range of gasoline and diesel fuel boiling, by introducing fuel additives and adding butanes to the gasoline. An environmental tax has been developed which allows oil refineries to have a direct impact on the production of fuels with improved environmental performance, taking into account the need to minimize the density of the fuel within a given category of quality.
Afficher plus [+] Moins [-]An analysis of the impact on land use and ecological vulnerability of the policy of returning farmland to forest in Yan’an, China Texte intégral
2016
Hou, Gang | Li, Xuxiang | Wang, Jing jing | Zhang, Jing
During the past decades, land use change has taken place around the Loess Plateau at unprecedented rates. Due to the impact of existing land use policy, great changes have taken place in the land use types in this ecologically vulnerable area. Taking eight counties in Yan’an, Shaanxi province, China, as the study area, this study analyzed the long-term (from 1997 to 2011) changes in land use and ecological vulnerability. Based on thematic mapper (TM) images of Yan’an in 1997, 2004, and 2011, the dynamic changes in land use are analyzed with the application software for remote sensing (RS) and geographic information system (GIS) since the implementation of the policy of returning farmland to forest. Combined with the land use data, the local socio-economic data, and natural resources condition, ecological vulnerability is evaluated using the spatial principal component analysis (SPCA) model in Yan’an region. Using the natural breaks classification (NBC), the evaluation results are divided into five categories: potential, slight, light, medium, and heavy. The results show that although the regional land use types changed markedly, the ecological vulnerability in the study shows greater than average optimism, and the ecological vulnerability index of the southern four counties is lower than that of the northern four counties. In 1997–2011, the eco-environmental quality gradually improved in most areas. However, it gradually deteriorated in some regions.
Afficher plus [+] Moins [-]Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use Texte intégral
2016
Pacioglu, Octavian | Moldovan, Oana Teodora
Whereas the response of lotic benthic macroinvertebrates to different environmental stressors is a widespread practice nowadays in assessing the water and habitat quality, the use of hyporheic zone invertebrates is still in its infancy. In this study, classification and regression trees analysis were employed in order to assess the ecological requirements and the potential as bioindicators for the hyporheic zone invertebrates inhabiting four lowland chalk rivers (south England) with contrasting eutrophication levels (based on surface nitrate concentrations) and magnitude of land use (based on percentage of fine sediments load and median interstitial space). Samples of fauna, water and sediment were sampled twice, during low (summer) and high (winter) groundwater level, at depths of 20 and 35 cm. Certain groups of invertebrates (Glossosomatidae and Psychomyiidae caddisflies, and riffle beetles) proved to be good indicators of rural catchments, moderately eutrophic and with high fine sediment load. A diverse community dominated by microcrustaceans (copepods and ostracods) were found as good indicators of highly eutrophic urban streams, with moderate-high fine sediment load. However, the use of other taxonomic groups (e.g. chironomids, oligochaetes, nematodes, water mites and the amphipod Gammarus pulex), very widespread in the hyporheic zone of all sampled rivers, is of limited use because of their high tolerance to the analysed stressors. We recommend the use of certain taxonomic groups (comprising both meiofauna and macroinvertebrates) dwelling in the chalk hyporheic zone as indicators of eutrophication and colmation and, along with routine benthic sampling protocols, for a more comprehensive water and habitat quality assessment of chalk rivers.
Afficher plus [+] Moins [-]Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process Texte intégral
2016
Tian, Jiangnan | Olajuyin, Ayobami Matthew | Mu, Tingzhen | Yang, Maohua | Xing, Jianmin
The electro-Fenton (EF) process treatment of 0.1-M (rhodamine B) RhB solution was studied with different graphite cathode materials, and graphite felt (GF) was selected as a promising material in further investigation. Then, the degradation performances of gas diffusion electrode (GDE) and graphite felt (GF) were compared, and GDE was confirmed to be more efficient in RhB removal. The operational parameters such as Fe²⁺ dosage and current density were optimized, and comparison among different modified methods—polytetrafluoroethylene-carbon black (PTFE-CB), polytetrafluoroethylene-carbon nanotube (PTFE-CNT), electrodeposition-CB, and electrodeposition-CNT—showed 98.49 % RhB removal by PTFE-CB-modified cathode in 0.05 M Na₂SO₄ at a current density of 50 A/m² and an air flow rate of 1 L/min after 20 min. Meanwhile, after cathode modified by PTFE-CB, the mineralization efficiency and mineralization current efficiency performed absolutely better than the pristine one. Cyclic voltammograms, SEM images, contact angles, and BET surface area were carried out to demonstrate stronger current responses and higher hydrophilicity of GF after modified. The value of biochemical oxygen demand/chemical oxygen demand (BOD₅/COD) increased from 0.049 to 0.331 after 90-min treatment, suggesting the solution was biodegradable, and the modified cathode was confirmed to be stable after ten circle runs. Finally, a proposed degradation pathway of RhB was put forward.
Afficher plus [+] Moins [-]Increasing CACNA1C expression in placenta containing high Cd level: an implication of Cd toxicity Texte intégral
2016
Phuapittayalert, Laorrat | Saenganantakarn, Phisid | Supanpaiboon, Wisa | Cheunchoojit, Supaporn | Hipkaeo, Wiphawi | Sakulsak, Natthiya
Cadmium (Cd) has known to produce many adverse effects on organs including placenta. Many essential transporters are involved in Cd transport pathways such as DMT-1, ZIP as well as L-VDCC. Fourteen pregnant women participated and were divided into two groups: high and low Cd-exposed (H-Cd, L-Cd) groups on the basis of their residential areas, Cd concentrations in the blood (B-Cd), urine (U-Cd), and placenta (P-Cd). The results showed that the B-Cd and U-Cd were significantly increased in H-Cd group (p < 0.05). Interestingly, the P-Cd in H-Cd group was elevated (p < 0.05) and positively related to their B-Cd and U-Cd values (p < 0.05). However, the mean cord blood Cd (C-Cd) concentration in H-Cd group was not significantly increased about 2.5-fold when comparing to L-Cd group. To determine the Cd accumulation in placental tissues, metallothionein-1A (MT-1A) and metallothionein-2A (MT-2A) expressions were used as biomarkers. The results revealed that mean MT-1A and MT-2A mRNAs and MT-1/2 proteins were up-regulated in H-Cd group (p < 0.05). In addition, the Ca channel alpha 1C (CACNA1C) mRNA and protein expressions were noticeably elevated in H-Cd group (p < 0.05). From these findings, we suggested that CACNA1C might be implicated in Cd transport in human placenta.
Afficher plus [+] Moins [-]Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications Texte intégral
2016
Sekhar, Y Raja | Sharma, K. V. | Kamal, Subhash
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al₂O₃ nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
Afficher plus [+] Moins [-]Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective Texte intégral
2016
Morakinyo, Tobi Eniolu | Lam, Yun Fat
Numerical experiments involving street canyons of varying aspect ratio with traffic-induced pollutants (PM₂.₅) and implanted trees of varying aspect ratio, leaf area index, leaf area density distribution, trunk height, tree-covered area, and tree planting pattern under different wind conditions were conducted using a computational fluid dynamics (CFD) model, ENVI-met. Various aspects of dispersion and deposition were investigated, which include the influence of various tree configurations and wind condition on dispersion within the street canyon, pollutant mass at the free stream layer and street canyon, and comparison between mass removal by surface (leaf) deposition and mass enhancement due to the presence of trees. Results revealed that concentration level was enhanced especially within pedestrian level in street canyons with trees relative to their tree-free counterparts. Additionally, we found a dependence of the magnitude of concentration increase (within pedestrian level) and decrease (above pedestrian level) due to tree configuration and wind condition. Furthermore, we realized that only ∼0.1–3 % of PM₂.₅ was dispersed to the free stream layer while a larger percentage (∼97 %) remained in the canyon, regardless of its aspect ratio, prevailing wind condition, and either tree-free or with tree (of various configuration). Lastly, results indicate that pollutant removal due to deposition on leaf surfaces is potentially sufficient to counterbalance the enhancement of PM₂.₅ by such trees under some tree planting scenarios and wind conditions
Afficher plus [+] Moins [-]