Affiner votre recherche
Résultats 2741-2750 de 4,935
Hyperbranched polyamide–functionalized sodium alginate microsphere as a novel adsorbent for the removal of antimony(III) in wastewater Texte intégral
2019
Wang, Lili | Li, Heng | Yu, Deyou | Wang, Yijia | Wang, Wei | Wu, Minghua
In order to enhance the removal of Sb(III) in wastewater, hyperbranched polyamide–functionalized sodium alginate (HA@SA) microsphere was prepared by grafting of hyperbranched polyamide (HA) on the surface of sodium alginate (SA) microsphere. Adsorption properties of Sb(III) were investigated via static and dynamic adsorption tests. The cycling reusability of HA@SA microspheres was explored through adsorption-desorption tests. The changes of HA@SA microspheres before and after adsorption were characterized by FT-IR, SEM-EDS, and XPS. Results showed that the maximum Sb(III) adsorption capacity of HA@SA microspheres reached up to 195.7 mg/g, improved by 1.16 times in comparison with SA microspheres. The Sb(III) adsorption processes of HA@SA microspheres were depicted by pseudo-second-order kinetics and the Langmuir isotherm models with accuracy. It covered a homogeneous single-layer adsorption controlled by chemisorption along with exotherm spontaneously. After recycling for 8 times, the adsorption capacity of HA@SA microspheres still retained higher than 90% of the original value.
Afficher plus [+] Moins [-]Environmental photochemical fate and UVC degradation of sodium levothyroxine in aqueous medium Texte intégral
2019
Parizi, Marcela Prado Silva | Lastre Acosta, Arlen Mabel | Ishiki, Hamilton Mitsugu | Rossi, Renata Calciolari | Mafra, Renata Cristina | Teixeira, Antonio Carlos Silva Costa
The synthetic hormone sodium levothyroxine (LTX) is one of the most prescribed drugs in the world and the most effective in hypothyroidism treatment. The presence of LTX in the environment has become a matter of major concern due to the widespread use of this hormone and by the fact that it is only partially removed in conventional water and sewage treatment plants. However, information regarding the photochemical fate of this hormone in environmental or engineered systems is scarce in the literature. In this work, the sunlight-driven direct and indirect LTX degradation was investigated by determining the photolysis quantum yield, ΦLTX = 3.80 (± 0.02) × 10⁻⁵, as well as the second-order kinetic constants of the reactions with hydroxyl radicals, kLTX,•OH = 1.50 (± 0.01) × 10¹⁰ L mol⁻¹ s⁻¹ and singlet oxygen, kLTX,₁O₂ = 1.47 (± 0.66) × 10⁸ L mol⁻¹ s⁻¹. Mathematical simulations indicate that LTX photodegradation is favored in shallow, nitrite-rich, and dissolved organic matter (DOM)-poor environments, with LTX half-life times varying from less than 10 days to about 80 days. LTX removals of 85 and 95% were achieved by UVC photolysis and UVC/H₂O₂ after 120 min, respectively. Three transformation products, triiodothyronine, diiodothyronine, and diiodotyrosine, were identified during LTX degradation by the UVC-based processes studied. The results herein regarding photo-induced kinetics coupled with environmental fate simulations may help evaluate LTX persistence and also the design of water and wastewater treatment processes.
Afficher plus [+] Moins [-]Bioaccumulation, antioxidative response, and metallothionein expression in Lupinus luteus L. exposed to heavy metals and silver nanoparticles Texte intégral
2019
Jaskulak, Marta | Rorat, Agnieszka | Grobelak, Anna | Chaabene, Zayneb | Kacprzak, Małgorzata | Vandenbulcke, Franck
Yellow-lupin (Lupinus luteus L.) was grown on soils contaminated with heavy metals during two parallel studies. In the first one, the soil was contaminated by industrial activities whereas, in the second one, the soil was artificially contaminated with a single metal including Cd, Pb, Zn, Ni (in nitrate form), and Ag (in nitrate and nanoparticles form). The study was performed to assess a plant’s response to contamination including its antioxidative response and molecular mechanisms involved in metal detoxification through the expression level of metallothioneins (MTs). Overall, the study provided insights into identification and validation of housekeeping genes (HKG) in L. luteus under exposure to metal stress and showed the effects of selected heavy metals and silver nanoparticles on the expression of metallothioneins, the activity of guaiacol peroxidase (GPX) and bioaccumulation of metals in leaves of L. luteus. As such, HKG validation using BestKeeper, NormFinder, and geNorm software allowed for the selection of four most stable reference genes in a context metal contamination for the selected plant. Moreover, a significant increase in the expression levels of MT was observed in plants grown under heavy metal stress and none on plants grown on 25 mg kg⁻¹ of silver nanoparticles. Also, the GPX activity and MT expression showed statistically significant changes between different conditions and doses which means that they can be used as highly sensitive stress markers for planning the phytoremediation process on a large scale.
Afficher plus [+] Moins [-]Population susceptibility differences and effects of air pollution on cardiovascular mortality: epidemiological evidence from a time-series study Texte intégral
2019
Liu, Mengyao | Xue, Xiaoxia | Zhou, Baosen | Zhang, Yawei | Sun, Baijun | Chen, Jianping | Li, Xuelian
There is insufficient evidence on the relationship between air pollution and mortality from cardiovascular disease (CVD) in northeast China. Here, we explored the short-term effects of air pollution on CVD mortality and preliminarily investigated differences in population susceptibility to air pollution in Shenyang, China. CVD mortality, air pollution, and meteorological data during 2013–2016 were obtained. Time-series analysis was applied to evaluate the association between air pollution and daily CVD mortality with different lag structures. In the single-pollutant model, each 10 μg/m³ increase in PM₂.₅, PM₁₀, SO₂, NO₂, and O₃ concentrations and 1 mg/m³ increase in CO concentrations at lag0 (same day) was significantly associated with an increase of 0.40% (95% confidence interval, 0.22–0.59%), 0.26% (0.12–0.40%), 0.43% (0.16–0.70%), 0.90% (0.14–1.67%), 0.76% (0.21–1.32%), and 3.33% (0.97–5.75%), respectively, in overall CVD mortality. Susceptibility to air pollutants was higher among females, elderly people, and ischemic heart disease patients. Furthermore, air pollution effects on CVD mortality were 2–8 times greater during the non-heating period. In conclusion, the air pollutants PM₂.₅, PM₁₀, SO₂, NO₂, O₃, and CO showed significant positive effects on CVD mortality in Shenyang, China. These findings highlight the adverse effects of air pollution and suggest the need for personal protective equipment and reduction of air pollution sources.
Afficher plus [+] Moins [-]Tissue-based assessment of hazard posed by mercury and selenium to wild fishes in two shallow Chinese lakes [Erratum: December 2021, Vol.28(47), pp.67905-67906] Texte intégral
2019
Zhang, Ruiqing | Wu, Fengchang | Giesy, John P.
Total (all forms of inorganic and organic) concentrations of mercury (Hg) and selenium (Se) were measured in dorsal muscle and eggs of wild fishes from two shallow lakes in China: Tai Lake (Ch: Taihu; TL) and Baiyangdian Lake (BYDL). Hazard quotients (HQs) were calculated by dividing concentrations of Se or Hg in muscle or eggs of fishes by threshold concentrations for effects expressed as tissue residue toxicity reference values (TR-TRVs). Concentrations of Hg in whole bodies of fishes were estimated by concentrations in muscle. Based on concentrations of Hg in whole body, HQs for fishes in TL and BYDL were less than 1.0, which suggests little to moderate potential for effects on these fishes and unaccepted adverse effects of Hg are unexpected for adult fishes. HQs of Se in muscle of common carp from TL were closed to 1.0, and 27% of HQs based on concentrations of Hg in eggs of fishes from BYDL exceeded 1.0. Potential hazard due to Hg on common carp in TL and reproductive effects of Se on fishes from BYDL exhibited need for concern. Ratios of molar concentrations of Se to Hg were greater than 1.0. Thus, there might be some protective effects of Se on effects of Hg on fishes in TL and BYDL.
Afficher plus [+] Moins [-]Analyses of Influencing Factors for Radon Emanation and Exhalation in Soil Texte intégral
2019
Zhang, Wei Qiang | Zhang, Yuliang | Sun, Qiang
The study on radon emanation and exhalation in soil is more and more important for environmental protection, and many influencing factors on radon emanation coefficient and exhalation in soil have been well documented. In order to evaluate the radon change and key influencing factors, this paper made an overall summary based on these studies. The main results show that the change laws of emanation coefficient with elevated temperature of radon can be divided into three types and they relate to the moisture state and content of soil. The normalized radon exhalation has a negative linear correlation with temperature, and the maximum emanation coefficient has a positive linear correlation with heating rate and specific surface. The pores with different size have different effects on the emanation coefficient of radon in the soil, e.g., the micro-pores increase emanation coefficient, and the mezzo-pores decrease emanation coefficient. Taken together, our results offered guiding significance for the evaluation of radon in soil and in air when soil state changes. Lastly, the existing problems and research directions were also given.
Afficher plus [+] Moins [-]Heavy metal distribution, translocation, and human health risk assessment in the soil-rice system around Dongting Lake area, China Texte intégral
2019
Tang, Lin | Deng, Sihan | Tan, Di | Long, Jiumei | Lei, Ming
Heavy metals including copper (Cu), zinc (Zn), cadmium (Cd), chromium (Cr), lead (Pb), and arsenic (As) were investigated in 89 pairs of rice plant and paddy soils around Dongting Lake area, China. Rice plants and soils were collected with GPS device, and heavy metal contents in different rice plant tissues and soils were measured. The aim of the present study was to assess the heavy metal pollution and translocation in the whole soil-rice system, including the consequent human health risk for residents. According to the indices of average geoaccumulation (Igₑₒ) of the studied elements, paddy soils in study area were moderately polluted by Cd, lowly polluted by Pb, and not polluted by Cu, Zn, Cr, and As. Considering the much higher concentrations of studied elements in roots than in other tissues of rice plants, a great mass of these elements was assumed to be confined in the roots. The low translocation factors from root to shoot (Tfᵣₒₒₜ₋ₛₕₒₒₜ) of all the studied heavy metals (0.04–0.74) underpinned this. The high translocation factors from soil to root (Tfₛₒᵢₗ₋ᵣₒₒₜ) of Cd (9.12), As (4.38), and Zn (2.05) indicated the high bioavailability of these heavy metals for rice plant. The health risk assessment using target hazard quotients (THQs) model indicated that Cd (5.17 for adults and 4.49 for children respectively) and As (3.61 for adults and 3.14 for children respectively) could cause human health risk both for adults and children. Further, given the rate of individual THQ values exceeding one, Cu might also be considered as a potential human health dangerous element in the study area. It was worth noting that as one of the main pollutants, Pb did not show human health risk through rice grain consumption due to its low Tf values in soil-rice system. However, the risk identification of As using comparisons of measured concentrations with risk screening value in Chinese paddy soil standard (GB15618-2018) was not consistent with the human health risk assessment result. This might indicate that site-specific risk screening values of As in China is in demand.
Afficher plus [+] Moins [-]A scientometric analysis and visualization of global research on brownfields Texte intégral
2019
Lin, Hongli | Zhu, Yuming | Ahmad, Naveed | Han, Qingye
Brownfields have attracted increasing attentions from both researchers and practitioners. However, few studies have attempted to make a comprehensive and quantitative review on this topic. This study conducted a scientometric review on the brownfield research from 1995 to 2017 using CiteSpace. The knowledge structure, hot topics, research trends, and gaps were analyzed based on the co-author, co-word, co-citation, and clusters analysis. Six hundred thirty articles from the Web of Science core collection database were selected as the research samples. Results revealed that the research focus has changed from soil remediation technologies to sustainable regeneration methods. The most vital development in brownfield research occurred in the USA, England, Canada, Germany, and China. “Brownfield,” “heavy metal,” “remediation,” “redevelopment,” and “sustainability” were the most frequently used keywords. Whereas “management” and “biodiversity” received citation bursts in recent years. Existing researches mainly concentrated on subject categories of environmental sciences ecology, environmental sciences, engineering, environmental studies, engineering environmental, and urban studies. Sustainable regeneration, urban brownfields’ regeneration, mental distribution, coal-mine brownfield, and ecosystem service were the identified co-citation clusters and represented the hot topics and emerging trends. The research gaps can serve as a motivation to research on the next generation of brownfields to support the sustainable development. This study provides researchers and practitioners an extensive and intensive understanding of the salient research themes and trends of brownfields’ research worldwide.
Afficher plus [+] Moins [-]Treatment of soil washing wastewater via adsorption of lead and zinc using graphene oxide Texte intégral
2019
Futalan, Cybelle M. | Phatai, Piaw | Kim, Jongsik | Maulana, Achmad Yanuar | Yee, Jurng-Jae
In the present work, graphene oxide (GO) was synthesized via the modified Hummers method and utilized in treating real soil washing wastewater via adsorptive removal of lead (Pb) and zinc (Zn). Characterization analysis of GO was performed using X-ray diffraction, Brunauer-Emmett-Teller method, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and zeta potential analysis. The Van’t Hoff, Eyring, and Arrhenius equations were applied to determine the activation and thermodynamic parameters namely activation energy (Eₐ), standard Gibbs energy change (ΔG°), standard enthalpy change (ΔH°), standard entropy change (ΔS°), change in activation Gibbs energy (ΔG#), change in activation enthalpy (ΔH#), and change in activation entropy (ΔS#). Based on the high coefficient of determination values (0.8882 ≥ R² ≥ 0.9094) and low values of SSE (0.0292 ≤ SSE ≤ 0.0511) and ARE (0.8014 ≤ ARE ≤ 0.8822), equilibrium data agreed well with the Freundlich isotherm. The maximum adsorption capacity for Pb(II) and Zn(II) was determined to be 11.57 and 4.65 mg/g, respectively. Kinetic studies revealed that pseudo-second-order equation fitted well with the experimental data, which indicates that chemisorption is the rate-determining step of the adsorption system. Results have shown the possibility of GO as a potential adsorbent material in the treatment of soil washing wastewater.
Afficher plus [+] Moins [-]Methods for monitoring construction off-road vehicle emissions: a critical review for identifying deficiencies and directions Texte intégral
2019
Sepasgozar, Samad M. E. | Li, Heng | Shirowzhan, Sara | Tam, Vivian W. Y.
The paper reviews the existing applications of sensing technologies for measuring construction off-road vehicle emissions (COVE) such as earthmoving equipment. The current literature presented different measurement methods and reported the results of utilisation of new technologies for measuring COVE. However, previous papers used different technology applications covering only a part of the monitoring process with its own limitations. Since technologies are advancing and offering novel solutions, there is an urgent need to identify the gaps, re-evaluate the current methods, and develop a critical agenda for automating the entire process of collecting emissions data from construction sites, and monitoring the emission contributors across cities. This paper systematically identifies relevant papers through a search of three key databases—Web of Science, Engineering Valley and Scopus—covering the publications in the last decade from 2008 to 2017. An innovative robust research method was designed to select and analyse the relevant papers. The identified papers were stored in a data set, and a thematic algorithm employed to find the clusters of papers which might be potentially relevant. The selected papers were used for further micro-thematic analysis to find key relevant papers on COVE, and the gap in the literature. A sample of relevant papers was found relevant to COVE and critically reviewed by coding and content analysis. This paper critically reviews the selected papers and also shows that there is a considerable gap in the applications of new technologies for measuring in-use COVE in real time based on real activities toward automated methods. This review enables practitioners and scholars to gain a concrete understanding of the gap in measuring COVE and to provide a significant agenda for future technology applications.
Afficher plus [+] Moins [-]