Affiner votre recherche
Résultats 291-300 de 448
The Importance of Precedent Hydro-climatological Conditions for the Mass Transfer of Pollutants in Separated Sewer Systems and Corresponding Tributaries During Storm Events
2007
Krein, Andreas | Salvia-Castellvi, Merce | Iffly, Jean Francois | Pfister, L. (Laurent) | Hoffmann, Lucien
Runoff events were analysed in separated sewer systems in the town of Luxembourg. The relationships between Event Mean Concentrations of different pollutants and runoff patterns were evaluated. In addition, the inter-storm and intra-storm variability of the material transport were determined. Primarily, the variations in pollutant concentrations and loads are determined by the antecedent weather conditions. The presence of illicit sanitary inputs in one of the sewers produced a significant first flush effect as well as higher Event Mean Concentrations for pollutants. Furthermore, near the town of Trier 40 storms were analyzed in a small natural basin mainly influenced by runoff from a separated sewer system. Natural and artificial storm events were investigated in order to estimate the relationship between the pollutant sources in the channel and from the separated sewer system. Just like in the canalization of Luxembourg City the pollutant dynamics during natural storms are strongly influenced by pre-event hydrological conditions. The artificial storms behave differently. Despite little pre-rain, the maximum concentrations of toxic substances are comparatively low. A resuspension of sediment only occurs in the natural channel system, without the introduction of fines from the sewer system.
Afficher plus [+] Moins [-]The Influence of Pedology and Changes in Soil Moisture Status on Manganese Release from Upland Catchments: Soil Core Laboratory Experiments
2007
Hardie, A. M. | Heal, K. V. | Lilly, A.
Manganese (Mn) contamination of drinking water may cause aesthetic and human health problems when concentrations exceed 50 and 500 μg l⁻¹, respectively. In the UK, the majority of Mn-related drinking water supply failures originate from unpolluted upland catchments. The source of Mn is therefore soil, but the exact mechanisms by which it is mobilised into surface waters remain unknown. Elevated Mn concentrations in surface waters have been associated with the rewetting of dried upland soils and with conifer afforestation. We investigated these hypotheses in a laboratory experiment involving the drying and rewetting of intact soil cores (1,900 cm³ volume) of horizons of four representative soil type-land use combinations from an upland water supply catchment in southwest Scotland. Although no statistically significant effect of land use or soil type was detected on Mn concentrations in soil water, Mn release occurred from three soil horizons upon rewetting. Soil water Mn concentrations in the moorland histosol H2 (10–30 cm), the histic podzol H and Eh horizons increased from means of 5.8, 6.2 and 0.6 μg l⁻¹ prior to rewetting to maxima of 90, 76 and 174 μg l⁻¹ after rewetting, respectively. The properties of these three horizons indicate that Mn release is favoured from soil horizons containing a mixture of organic and mineral material. Mineral material provides a source of Mn, but relatively high soil organic matter content is required to facilitate mobilisation. The results can be used alongside soil information to identify catchments at risk of elevated Mn concentrations in water supplies.
Afficher plus [+] Moins [-]Chemical Characterization of Rain and Fog Water in the Cervenohorske Sedlo (Hruby Jesenik Mountains, Czech Republic)
2007
Zapletal, Miloš | Kuňák, David | Chroust, Petr
Field study at the Cervenohorske sedlo (1,013 m a.s.l.) (Hruby Jesenik Mountains, the Czech Republic, Central Europe) during 1999-2002 has been conducted in order to analyse the chemistry of rain/snow water using bulk and throughfall collector and fog/cloud water using modified passive Grunow collector. Fog water input to coniferous forest (Picea abies) was quantified using canopy balance method. For all samples pH, and the concentrations of [graphic removed] , Ca²⁺, K⁺, Mg²⁺, Na⁺, Cl-, [graphic removed] , and [graphic removed] were measured. The volume-weighted mean pH value varied from 4.92 to 5.43 in open bulk precipitation, from 4.30 to 4.71 in throughfall and from 4.66 to 5.23 in fog water. The fog droplets generally contain higher ion concentrations than rainwater. The related enrichment factors lie between 1.1 and 10.7 for the relevant species. The fog samples exhibit higher concentrations of [graphic removed] and [graphic removed] as compared to the bulk samples during 2000-2002. [graphic removed] are 5.7-10.7 times more concentrated in fog water and [graphic removed] are 3.4-7.2 times more concentrated in fog water. These differences may result from the height and characteristics of formation of the droplets. Based on canopy balance method, the annual fog water inputs were estimated to be 22 and 19% of rain and snow annual amounts in 1999 and 2000, respectively. For [graphic removed] , [graphic removed] , and [graphic removed] , the contribution of fog deposition in total (bulk + fog) deposition is estimated as 54, 47, and 42%, respectively.
Afficher plus [+] Moins [-]Recovery of Acidified Streams in Forests Treated by Total Catchment Liming
2007
Westling, Olle | Zetterberg, Therese
Reduced emissions of acidifying pollutants have changed the acidification process, and as a result, forest soils and surface waters are slowly recovering in Sweden. However, model calculations show that some areas may never recover completely unless further measures, such as liming, are undertaken. Liming of surface waters (lakes, rivers and wetlands) has been successfully practised in Sweden since the 1970s, but repeated treatments are necessary. A full recovery of acidified lakes and streams without frequent liming is however not possible until soil acidification is reversed in the most strongly affected areas. In this study, the recovery of acidified streams was examined using 'the total catchment approach' i.e. treatment of both recharge and discharge areas. The aim was to compare the quantitative effect of different treatments on run off chemistry and the recovery of brown trout. Catchments in southwest Sweden were treated with a combination of 2 tons of wood ash and 4, 6 or 12 tons of crushed limestone per hectare in 1998/1999. Treatment of both recharge and discharge areas resulted in fast and significant changes in stream water quality, e.g. increased concentrations of calcium, higher pH and ANC and a decreased concentration of inorganic aluminium. The initial changes were dependent on the distribution of the applied lime between discharge and recharge areas rather than the average dose on the total catchment. Treatment of recharge areas only, resulted in smaller but still significant effects on calcium, pH and ANC in stream water. Furthermore, there was an initial leaching of nitrate but it was only minor compared with the elevated leaching that occurs after a clear-cut. As a result of the treatments, brown trout is now successfully reproducing.
Afficher plus [+] Moins [-]Processes Controlling Trace-Metal Transport in Surface Water Contaminated by Acid-Mine Drainage in the Ducktown Mining District, Tennessee
2007
Lee, Giehyeon | Faure, Gunter
Former mining activities lasting 140 years in the Ducktown Mining District, Tennessee, USA, has contaminated the streams draining the district with acid-mine drainage (AMD). North Potato Creek and its major tributary, Burra Burra Creek, are two of the most heavily AMD-impacted streams in the district. The removal of dissolved metals from the water in these creeks is largely attributable to the sorption of Cu, Zn, Co, Al, and Mn on suspended hydroxide precipitates of Fe. The fraction of trace metals remaining in solution decreases with increasing pH in the sequence Pb < Cu < Zn < Co. The concentration of Fe in solution also decreases with increasing pH due to the formation of ferric hydroxide precipitates which accounted for up to 81.4% by weight of the total suspended sediment. The concentration of suspended sediment substantially decreases as the water of North Potato Creek flows through a large settling basin, where 1.3 (±0.3) x 10⁶ kg/year of trace-metal-laden suspended sediment would be annually deposited. In spite of this attempt to purify it, the water discharged into the river is acidic (pH 3.6) and still contains high concentrations of dissolved trace metals, which would resorb on to suspended sediment and be ultimately transported to a downstream reservoir, Ocoee No. 3 Lake.
Afficher plus [+] Moins [-]A Comparison of ¹⁸Oδ Composition of Water Extracted from Suction Lysimeters, Centrifugation, and Azeotropic Distillation
2007
Figueroa-Johnson, Maria A. | Tindall, James A. | Friedel, Michael
The representativeness of soil pore water extracted by suction lysimeters in ground-water monitoring studies is a problem that often confounds interpretation of measured data. Current soil water sampling techniques cannot delineate from which soil volume a pore water sample is extracted, neither macroscopic, microscopic, or preferential flowpath. This research was undertaken to compare δ¹⁸O and Br- values of extracted suction lysimeters samples from intact soil cores with samples obtained by the direct extraction methods of centrifugation and azeotropic distillation. Also, the study was concerned with determining what portion of soil pore water is sampled by each method and explaining differences in concentrations of the extracted water from each method to allow a determination of the accuracy and viability of the three methods of extraction. Intact soil cores (30 cm diameter by 40 cm height) were extracted from two different sites. Site 1 was rapid infiltration basin number 50, near Altamonte Springs in Seminole County, Florida. Site 2 was the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri. Isotopically (¹⁸Oδ) labeled water and bromide concentrations within water samples taken by suction lysimeters was compared with samples obtained by methods of centrifugation and azeotropic distillation. The ¹⁸Oδ water was analyzed by mass spectrometry while bromide concentration, applied in the form of KBr was measured using standard IC procedures. Water collected by centrifugation and azeotropic distillation data were about 0.25[per thousand] more negative than that collected by suction lysimeter values from a sandy soil and about 2-7[per thousand] more negative from a well structured soil. Results indicate that the majority of soil water in well-structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. In cases where a sufficient volume of water has passed through the soil profile and displaced previous pore water, suction lysimeters will collect a representative sample of soil pore water from the sampled depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeter be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The data also suggest that each extraction method samples a separate component of soil-pore water. Centrifugation can be used with success, particularly for efficient sampling of large areas. Azeotropic distillation is more appropriate when strict qualitative and quantitative data on sorption desorption, and various types of kinetic studies may be needed.
Afficher plus [+] Moins [-]Temporal and Spatial Monitoring of the pH and Heavy Metals in a Soil Polluted by Mine Spill. Post Cleaning Effects
2007
Ordóñez Fernandez, R. | Giráldez Cervera, J.V. | Vanderlinden, K. | Carbonell Bojollo, R. | González Fernández, P.
The bursting of the mining dam of Aznalcollar (Seville, Spain) triggered an increase in the concentration of heavy metals in the soils of the river Guadiamar valley as a result of the leaching of the pyritic sludge deposited on them. After the cleaning operations which included, as well as mechanical clearing, the addition of different amendments, some areas with residual sludge remained, from which some heavy metals are being mobilized by the cyclical recharge and discharge processes of water in the profiles. This paper analyzes the effect of the soil recovery operations and the climatology on the concentration of metals and their distribution in the soil profile in an area affected by the toxic spill. Fourteen points have been selected in a plot in which acidity persists, there is no vegetation, and residual sludge stains can be seen at a glance. The temporal and spatial evolution of the extractable metals: Fe, Cu, Mn and Zn, the pH and the oxidable fraction has been measured in-depth. The results obtained up to now indicate a leaching of the pollutant towards deeper horizons, finding, at a depth of 757 cm, pH values of 3.5 and very high Fe and Mn concentrations available, especially in the profiles with large sized pores, with a big fraction of sand. On the surface, seasonally, there are low pH values of around 2.5 and extractable Fe contents of over 4000 ppm, which might have an influence on the quality of surface runoff or underground water.
Afficher plus [+] Moins [-]Effect of High Organic Loading Rates of Particulate and Dissolved Organic Matter on the Efficiency of Shallow Experimental Horizontal Subsurface-flow Constructed Wetlands
2007
Caselles-Osorio, Aracelly | Porta, Alessandro | Porras, Montserrat | García, Joan
Two identical experimental subsurface-flow constructed wetlands were operated at relatively high organic loading rates (23 g COD m-² day-¹) for 4 months to evaluate their relative ability to remove either dissolved organic carbon (glucose, considered to be a readily biodegradable substrate) or particulate organic carbon (starch, considered to be a slowly biodegradable substrate). The systems were built using plastic containers (0.93 m long, 0.59 m wide and 0.52 m high) that were filled with an 0.35 m layer of wetted gravel (D₆₀ = 3.5 mm, uniformity coefficient Cu = D₆₀/D₁₀ = 1.7) and the water level was maintained at 0.05 m under the gravel surface to give a water depth of 0.30 m. The results indicated that there was no significant difference in COD removal between the two systems. Both systems generally had COD removal rates of over 90%, which is quite high if the heavy load applied is taken into account. The removal of ammonium was greater in the glucose-fed system (57%) in comparison with the starch-fed system (43%). Based on mass balance calculations and stoichiometric relationships, it was estimated that denitrification and sulphate reduction were minor pathways for the removal of organic matter. Indirect observations allowed to assume that methanogenesis made a highly significant contribution to the removal of organic matter.
Afficher plus [+] Moins [-]A Synoptic Climatological Approach to Assess Climatic Impact on Air Quality in South-central Canada. Part II: Future Estimates
2007
Cheng, Chad Shouquan | Campbell, Monica | Li, Qian | Li, Guilong | Auld, H. | Day, Nancy | Pengelly, David | Gingrich, Sarah | Ye, Zhiming
Using within-weather-group air pollution prediction models developed in Part I of this research, this study estimates future air pollution levels for a variety of pollutants (specifically, carbon monoxide – CO, nitrogen dioxide – NO₂, ozone – O₃, sulphur dioxide – SO₂, and suspended particles – SP) under future climate scenarios for four cities in south-central Canada. A statistical downscaling method was used to downscale five general circulation model (GCM) scenarios to selected weather stations. Downscaled GCM scenarios were used to compare respective characteristics of the weather groups developed in Part I; discriminant function analysis was used to allocate future days from two windows of time (2040–2059 and 2070–2089) into one of four weather groups. In Part I, the four weather groups were characterised as hot, cold, air pollution-related, and other (defined as relatively good air quality and comfortable weather conditions). In estimating future daily air pollution concentrations, three future pollutant emission scenarios were considered: Scenario I – emissions decreasing 20% by 2050, Scenario II – future emissions remaining at the same level as at the end of the twentieth century, and Scenario III – emissions increasing 20% by 2050. The results showed that, due to increased temperatures, the average annual number of days with high O₃ levels in the four selected cities could increase by more than 40–100% by the 2050s and 70–200% by the 2080s (from the current areal average of 8 days) under the three pollutant emission scenarios. The corresponding number of low O₃ days could decrease by 4–10% and 5–15% (from the current areal average of 312 days). For the rest of the pollutants, future air pollution levels will depend on future pollutant emission levels. Under emission Scenarios II and III, the average annual number of high pollution days could increase 20–40% and 80–180%, respectively, by the middle and late part of this century. In contrast, under Scenario I, the average annual number of high pollution days could decrease by 10–65%.
Afficher plus [+] Moins [-]Intensive Field Survey of Aerosol and Gas Concentrations with 6-h Interval Sampling in Winter in Japan
2007
Aikawa, Masahide | Suzuki, Motoharu | Hiraki, Takatoshi | Tamaki, Motonori | Kondo, Akira | Mukai, Hitoshi | Murano, Kentato
We intensively surveyed the concentrations of chemical species in aerosols and gases using a four-stage filter-pack method at a site in Japan facing the Sea of Japan in winter with 6-h sample intervals. A few chloride species emitted anthropogenically were detected, and the HCl (g) concentration was quite low. The number of chloride species artifacts was also low. The HNO₃ (g) concentration was significantly higher when the monitored air mass passed over the Korean Peninsula compared to when it did not pass over the Korean Peninsula. In addition, the HNO₃ (g) concentration was significantly higher when the air mass arrived at the monitoring site by passing the route at lower latitude than the latitude of the monitoring site. On the other hand, the SO₂ (g) concentration showed no change between various trajectories of the air mass. The [Formula: see text] (p)/non-seasalt- (nss-) [Formula: see text] (p) ratio was intermediate between the compositions of (NH₄)₂SO₄ and NH₄HSO₄ when the air mass passed over the Korean Peninsula, whereas it was intermediate between NH₄HSO₄ and H₂SO₄ when the air mass did not pass over the Korean Peninsula. We detected the transboundary transport of sulfur dioxide with high time-resolution monitoring at two separate monitoring points: the current monitoring site and Oki Island.
Afficher plus [+] Moins [-]