Affiner votre recherche
Résultats 2951-2960 de 6,535
Sonication alkaline–assisted preparation of Rhizopus oryzae biomass for facile bio-elimination of tetracycline antibiotic from an aqueous matrix
2020
Azamateslamtalab, Elnaz | Madani, Mahboobeh | Ramavandi, Bahman | Muḥammadī, Riz̤ā
The present study aimed to remove tetracycline (TET) antibiotic molecule from an aqueous medium using adsorbents prepared from Rhizopus oryzae biomass. The TET adsorption process was discontinuous and the adsorbent biomass was crude and NaOH-sonication–modified Rhizopus oryzae fungi. Specific active surface area for crude and modified Rhizopus oryzae was 10.38 m²/g and 20.32 m²/g, respectively. The results showed that the maximum TET adsorption efficiency was determined at pH 4, temperature 25 °C, initial TET concentration 10 mg/L, contact time 80 min, and biomass quantity 2 g/L. The equilibrium behavior showed that the Langmuir model suitably described the process. The maximum TET adsorption capacity was determined to be 38.02 mg/g and 67.93 mg/g, respectively, indicating that the method of biomass modification promoted the bio-adsorption capacity. A higher correlation coefficient (R²) and lower RMSE for the pseudo-first-order kinetic than other models showed its ability to describe the behavior of TET bio-adsorption. The enthalpy thermodynamic parameter (ΔH°) for the TET adsorption process was determined − 63.847 kJ/mol and − 85.226 kJ/mol for the raw and modified Rhizopus oryzae, respectively. Therefore, it can be suggested that the biomass of Rhizopus oryzae especially the modified version can be effectively used for the TET removal from aqueous environments.
Afficher plus [+] Moins [-]Can small-bodied Daphnia control Raphidiopsis raciborskii in eutrophic tropical lakes? A mesocosm experiment
2020
Ferrão-Filho, Aloysio S. | Pereira, Uanderson J. | Vilar, Mauro C.P. | de Magalhães, Leonardo | Marinho, Marcelo M.
Raphidiopsis raciborskii is being considered an expanding, invasive species all over the world. It is a potentially toxin producer cyanobacterium and form blooms specially in (sub)tropical lakes, causing concern to public health. Thus, controlling such phenomena are of vital importance. To test the hypothesis that a tropical clone of Daphnia laevis is able to reduce the biomass of R. raciborskii, we performed a mesocosm experiment simulating a bloom of this cyanobacterium in field conditions and exposing it to ecologically relevant densities of daphniids. In addition, we tested the hypothesis that omnivorous fish would be able to exert a top-down effect on Daphnia, decreasing the effectiveness of this control. We used treatments with (10 and 20 Daphnia L⁻¹) or without Daphnia and fish (3 per mesocosm). Daphnia was able to significantly reduce the biomass of R. raciborskii only at the highest density tested. Fish had low effect on Daphnia biomass, but it is suggested that nutrient recycling by fish might have contributed to the higher R. raciborskii biomass in fish treatments. This is the first evidence of Daphnia control over saxitoxin-producing cyanobacteria in a tropical ecosystem.
Afficher plus [+] Moins [-]Simultaneous bioelectricity generation from cost-effective MFC and water treatment using various wastewater samples
2020
Naik, Sweta | Jujjavarappu, Satya Eswari
Worldwide, the requirement of electrical energy has increased with an increase in population. Thus, there is a need to develop an alternative source of sustainable energy, such as microbial fuel cell (MFC). MFC is a better option of energy generation and can provide a renewable resource which utilizes wastewater into power by the help of microorganisms. MFC is one of the advanced methods for treating wastewater and simultaneously producing current and voltage. Dual-chambered MFC was prepared using two plastic boxes (500 ml) by using wastewater as an anolyte. Different types of mediators are used in MFC including methylene blue, potassium ferricyanide, and EDTA to facilitate and higher the efficiency of electron transfer from the MFC to the electrode. Maximum OCV and current output of sample 1 (Budha Talab pond water) were 0.86 V and 75.1 mA and of sample 2 (Jaypee cement plant) were 1.42 V and 122 mA. The maximum current output of sample 3 (sugar industry, sewage waste, NIT canteen) was 1.3 V. Various physiochemical parameters such as dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) were analyzed which affect the power output. The obtained result concluded that wastewater should be feed at a certain time interval to avoid the loss of substrate for organisms in the anodic chamber which lead to the death of the microorganism. Among all, sugar industry wastewater has a high potential for power generation as their physiochemical results are suitable for better power output.
Afficher plus [+] Moins [-]Mercury detoxification by absorption, mercuric ion reductase, and exopolysaccharides: a comprehensive study
2020
Singh, Shalini | Kumar, Vipin
Mercury (Hg), the environmental toxicant, is present in the soil, water, and air as it is substantially distributed throughout the environment. Being extremely toxic even at low concentration, its remediation is utterly important. Therefore, it is necessary to detoxify the contaminant within the acceptable limits before threatening the environment. Although various conventional methods are being used, irrespective of high cost, it produces intermediate toxic by-product too. Biological methods are eco-friendly, clean, greener, and safer for the remediation of heavy metals corresponding to the conventional remediation due to their economic and high-tech constraints. Bioremediation is now being used for Hg (II) removal, which involves biosorption and bioaccumulation mechanisms or both, also mercuric ion reductase, exopolysaccharide play significant role in detoxification of mercury by acting a potential instrument for the remediation of heavy metals. In this review paper, we shed light on problems caused by mercury pollution, mercury cycle, and its global scenario and detoxification approaches by biological methods and result found in the literature.
Afficher plus [+] Moins [-]Assessing the environmental risk, fractions, and remobilization of copper and zinc in the sediments of the Jialing River—an important tributary of the Yangtze River in China
2020
Zhang, Tuo | Li, Lijuan | Xu, Fei | Chen, Xiangyu | Du, Li | Li, Yunxiang
Copper (Cu) and zinc (Zn) are two heavy metal pollutants that pose a serious risk in the Jialing River. Cu and Zn are transported into the sediment primarily due to the activities of the mining and smelting industries. In this study, we employed the diffusive gradient in thin films (DGT) technique, sequential extraction, and two assessment methods to evaluate the remobilization, fractions, and environmental risk in the downstream section of the Jialing River. The total concentrations of Cu and Zn in the four study areas followed the order S3 > S2 > S4 > S1, and the assessment results indicated that Cu and Zn presented a low environmental risk in the study area. Cu and Zn were primarily bound to the Fe/Mn oxide fraction (F2) and the residual fraction (F4). The results of the DGT probe showed a clear vertical distribution of Cu and Zn in the sediment (from 3 to − 12 cm), and both elements showed obvious increasing trends at the bottom of the probe. The correlation analysis indicated that CDGT-Cu correlated well with CDGT-Zn (r = 0.834, p < 0.01). The flux results showed that the sediment in the downstream section of the Jialing River is a major source of Cu and Zn and that there is a potential risk of release to the overlying water. Further analysis found that CDGT-Fe was negatively correlated with CDGT-Cu and CDGT-Zn, indicating that Fe may influence the remobilization of these metals. In addition, a hotspot of CDGT-Cu and CDGT-Zn at the bottom of the probe corresponded with a dark area in the AgI gel measuring CDGT-S. These results indicate that Fe and S are factors that mitigate the release of Cu and Zn from sediments.
Afficher plus [+] Moins [-]Comprehensive evaluation of flue gas desulfurization and denitrification technologies of six typical enterprises in Chengdu, China
2020
Liu, Hezijun | Tan, Qinwen | Jiang, Xia | Ma, Shenggui | Liao, Wenjie | Yang, Fumo | Huang, Fengxia
Post-combustion flue gas desulfurization and denitrification technologies are essential in achieving the full compliance of fine particulate matter (PM₂.₅, aerodynamic diameter less than 2.5 μm) air quality standards by 2030 in China as sulfur dioxide (SO₂) and nitrogen oxides (NOX) are the main precursors of PM₂.₅. Some studies have addressed the performance evaluation of desulfurization technology, but none included the water-soluble ions (sulfate (SO₄²⁻), nitrate (NO₃⁻), etc.) as an indicator nor accounted for uncertainty involved. In this study, we present a multilevel fuzzy method that integrates the analytic hierarchy process with fuzzy theory, defines SO₄²⁻concentration as a new environmental indicator, and is supplemented with an uncertainly analysis and apply the method for the techno-economic and environmental evaluation of desulfurization and denitrification technologies in six typical enterprises (including two power plants and three industrial production plants and a waste incineration plant) in Chengdu, China. The evaluation shows that first, the fluctuating desulfurization rate and the dosage leads to changed ranking of the economic and technical secondary evaluation results, with the overall comprehensive evaluation ranks unchanged. Second, from the perspective of environmental protection agency and the public, if the environmental indicators are empowered, the lower the SO₄²⁻concentration of an enterprise, the better its evaluation ranking will be and vice versa. Third, if we re-empower from the perspective of the enterprise, under the condition that the technical feasibility is met and the environmental indicators are basically up to standard, the low-cost removing process is more likely to be the tendency of the enterprise. In summary, the findings of the study have led to the conclusions that (1) for the power industry, the integration of desulfurization, denitrification, and dedusting technologies should be promoted rigorously; (2) the non-power industry should continue the end-of-pipe treatment and environmental protection regulatory policies of the power industry; and (3) the energy industry structure should be optimized with enhanced end-of-pipe control technologies to achieve deep reduction of air pollutants.
Afficher plus [+] Moins [-]Does globalization and financial sector development affect environmental quality? A panel data investigation for the Middle East and North African countries
2020
Awan, Abdul Majid | Azam, Muhammad | Saeed, Imran Ullah | Bakhtyar, Baher
The broad purpose of this study is to empirically explore the impact of globalization and financial development on environmental pollution by carbon (CO₂) emissions in the six Middle East and North Africa (MENA) countries using balanced panel data from 1971 to 2015. We also aimed to test the legitimacy of the environmental Kuznets curve (EKC) hypothesis for this region. The fixed-effects approach preferred by the Hausman specification test is used to estimate the empirical model, and the feasible generalized least squares (F.G.L.S.) estimator is employed to cope with any issue of heteroscedasticity and serial correlation. This study found that globalization and financial development have adverse and significant effects on environmental degradation and affirm the legitimacy of the EKC hypothesis for these countries. The finding of this study suggests that the governments of MENA countries should design and implement appropriate policies for strengthening the renewable sources of energy like wind, solar, bio-fuel, and thermal to decrease CO₂ emissions and boost sustainable economic development. The policymakers should focus on the efficiency of institutions and enhancement of energy-saving projects in this region.
Afficher plus [+] Moins [-]Zn/Pb Concentration Ratios Emphasize Spatiotemporal Airborne Metal Dynamics in Soils Under Different Land Use
2020
van Oort, Folkert | Monna, Fabrice | Garnier, Stéphane
Zinc (Zn) and lead (Pb) concentrations were measured in 173 samples collected in soils under forest, wetland, and arable land around a Zn smelter plant that stopped activity in the 1960s. The adopted sampling strategy consisted in collecting 0–30-cm-depth samples from all soils, tilled or not, in order to harmonize the analyzed soil volume to that of plowed soils. Airborne deposition was modeled as a function of the distance from the pollution source and of land use. The Zn/Pb concentration ratios in the surface layer remarkably contrasted 3–4, 1.5–2, and ~ 0.5 for arable, wetland, and forest soils, respectively, independently from the distance to the emission source, while total Zn and Pb concentrations, taken separately, were only slightly discriminant. For metal pollution sites originating from former industrial activity, Zn/Pb concentration ratios determined on relevant soil samples represent a powerful indicator that provides easy and rapid information in real field conditions on time-related input/output dynamics of mobile and less-mobile metal pollutants, and hence, on interactions between pollutants and soils under different land use conditions.
Afficher plus [+] Moins [-]Physiological and Genetic Effects of Imazamox Treatment on Imidazolinone-Sensitive and Resistant Sunflower Hybrids
2020
Arda, Hayati | Kaya, Armağan | Alyuruk, Gülçin
Use of herbicides is one of the most preferred options for crop protection against weeds. Imazamox is an imidazolinone (IMI)-group herbicide, and even low concentrations of imazamox might exhibit high biological activities on soil and plants. Therefore, in contrast to the conventional types of sunflowers that are sensitive to IMI-group herbicides, sunflowers that are resistive to IMI-group herbicides were also developed in recent years. In this study, the effect of imazamox on some physiological and genetic parameters of two types of sunflowers that are sensitive and resistant to IMI-group herbicides is comparatively investigated. For this purpose, three concentrations of imazamox (0.82, 1.64 and 2.45 mM, respectively) were applied on the two types of sunflower (i.e. SN:8 as IMI-sensitive type and SN:9 as IMI-resistant type, respectively). In addition, the physiological and molecular effects of IMI on antioxidant enzymes (such as superoxide dismutase (SOD), catalase, glutathione S-transferase (GST)), heat shock proteins (such as HSP26, HSP60, HSP70), phenolic contents (coumaric acid, caffeic acid, ferulic acid), phytohormone levels (indole-3-acetic acid, jasmonic acid (JA), salicylic acid (SA)) and accumulation of pesticides in the leaf tissue of sunflowers were analysed by qRT-PCR and LC MS/MS analysis. In this study, the pesticide concentration of resistant-type SN9 was significantly greater than that of SN8 with the application of 1.64–2.45 mM of imazamox, and the total pesticide amounts were 1.6 and 1.8 times significantly higher in leaf tissues, respectively. This pesticide accumulation led to an imbalance in the phytohormone and phenolic levels, increased levels of unfolded or misfolded proteins, and selective reduction of the GST, SA and JA levels in the two types of sunflowers. However, SN9 significantly responded to the pesticide accumulation via the overexpression of mitochondrial chaperone HSP60 (16.15-fold) and stress-specific HSP70 (54.46-fold), as well as higher SOD expression and SA and JA levels. In particular, by the application of high-dose IMI, our data revealed strong protein chaperone response, a high level of SOD expression, and finally the crosstalk of SA and JA, and these physiological and molecular phenomena can be indicative of pesticide-induced stress in SN9. The study suggested that high-concentration imazamox treatment induces some physiological and genetic changes at the phytotoxic level on not only IMI sensitive type but also resistant type.
Afficher plus [+] Moins [-]Laboratory Adsorption Studies on Cadmium (II) by Nonwoven Chitosan/Phosphorylated Microcellulose Nanocomposite
2020
Brandes, Ricardo | Brouillette, François | Chabot, Bruno
The rapid growth of human population and global industrialization has resulted in the generation of larger amounts of wastewater containing various pollutants, among which toxic heavy metals. Adsorption is efficient for this purpose, but its application is limited by the high cost of adsorbent materials. Chitosan (CS) and phosphorylated microcellulose (PMC) have a high potential as low-cost and effective adsorbents for water remediation. Nonwoven CS/PMC nanocomposite fiber mats were produced by electrospinning with up to 50% by weight of PMC. The thermal, chemical, and morphological properties of the mats were studied. Batch adsorption trials were carried out using Cd²⁺ ions. Kinetics and isotherm models were tested against experimental results and the thermodynamic properties were calculated. Results showed that the pseudo-second order model best fitted experimental data and suggested chemisorption as the mechanism for Cd²⁺ removal. Langmuir isotherm best described equilibrium data reaching the maximum adsorption capacity of 283 mg/g at 60 °C. This high value was attributed mainly to the large amount of phosphate groups, which require less energy to capture the metal cations. Thermodynamic evaluation suggested that the adsorption is a spontaneous endothermic reaction. These results confirm that CS/PMC mats are easy to produce, and provide high adsorption capacity in simulated wastewater containing Cd²⁺. These laboratory-based adsorption experiments will assist in selecting/ranking of potential candidate matrices, and scale-up development of technologies for complex wastewater applications.
Afficher plus [+] Moins [-]