Affiner votre recherche
Résultats 311-320 de 449
Comparison of Critical Load Exceedance and Its Uncertainty Based on National and Site-specific Data Texte intégral
2007
Heywood, Liz | Skeffington, R. A. | Whitehead, Paul | Reynolds, Brian
Critical loads have been used to develop international agreements on acidifying air pollution abatement, and within the UK and other countries, to develop national policies for pollution abatement. The Environment Agency (England and Wales) has regulatory obligations to protect sites of high conservation value from the threat of acidification, and hence requires a practical methodology for acidification assessments at the site-specific scale. The Environment Agency has therefore posed the question: Are the national critical load exceedance models sufficiently robust to form the basis for methods to assess harm to individual sites or are they only useful for national policy development? In order to provide one measure of the appropriateness of applying the models at the site-specific scale we incorporated estimates of uncertainty in both national and site-specific data into the calculation of critical load exceedance for individual sites. The exceedance calculations use data from a wide range of sources and the accuracy of the exceedance will be influenced by the accuracy of the input data sets. Using Monte Carlo methods to incorporate the uncertainty in the input data sets into the calculation a distribution of critical load exceedance values is generated rather than a single point estimate. This paper compares uncertainty analyses for coniferous forested sites in England and Wales using both national scale and site-specific data sets and uncertainty ranges.
Afficher plus [+] Moins [-]Mineralogy of Inhalable Particulate Matter (PM₁₀) in the Atmosphere of Beijing, China Texte intégral
2007
Lu, Senlin | Luan, Qixia | Jiao, Zheng | Wu, Minghong | Li, Zhen | Shao, Longyi | Wang, Fushun
The study of mineral components in respirable particles (particulate matter with diameter less than 10 μm, PM₁₀) in ambient air is important in understanding and improving air quality. In this study, PM₁₀ samples were collected in various areas around Beijing during 2002~2003, including an urban setting, a satellite city and a rural area. The mineralogical composition of these PM₁₀ samples was studied by X-ray diffraction (XRD), environmental scanning electron microscopy / and energy-dispersive X-ray analyzer (ESEM/EDX). The results indicated that mineral composition of PM₁₀ in different seasons and in different region varied significantly. Mineral mass concentration in Beijing PM₁₀ reached the highest percentage in the spring and fell to the lowest level in the autumn. The minerals in the spring PM₁₀ were dominated by clay minerals and quartz, followed by plagioclase, K-feldspar, calcite, dolomite, hematite, pyrite, magnesite, gypsum and laumontite as well as some unidentified materials. Fewer mineral types were collected in summer, however some new components, including K(NH₄)Ca(SO4)₂·H₂O, NH₄Cl and As₂O₃·SO₃ were noted to be present, suggesting that atmospheric chemical reaction in Beijing air were more active in summer than in other seasons. Mineral components in Beijing urban air were at a higher percentage with fewer phases than that in satellite city air. In conclusion, there was considerable variation in mineral components in PM₁₀ samples collected in different seasons and areas, which reflects the related air quality of sampling areas.
Afficher plus [+] Moins [-]Mining and Smelting Activities Produce Anomalies in Tree-growth Patterns (Murdochville, Québec) Texte intégral
2007
Aznar, J.-C. | Richer-Laflèche, M. | Bégin, C. | Marion, J.
At 94 sites throughout the Gaspésie peninsula, Québec, tree growth patterns and variation in growth rate were examined to determine relationship of tree growth to specific pollutants. Canopy dominant Black Spruce (Picea mariana, (Mill.) BSP) were selected at each site. Basal area increment (BAI) values were derived from increment cores and disks taken at breast height. A sigmoid model (Gompertz) to tree basal area was fitted and used as an estimate of tree growth. The residuals were used in association with other landscape variables to test the hypothesis that the tree-growth was reduced at the vicinity of the Murdochville smelter. Results showed that residuals were well explained by smelter distance, elevation, and slope exposition to the smelter emissions. On the intense activity period, tree growth was reduced within a 25-km radius of the smelter, on slopes exposed to the contaminant flow and located at elevation lower than 580 m. With the interruption of smelting activities, growth was recovered for survival trees.
Afficher plus [+] Moins [-]Accounting for Climate Change: Introduction Texte intégral
2007
Lieberman, Daniel | Jonas, Matthias | Winiwarter, Wilfried | Nahorski, Zbigniew | Nilsson, Sten
The assessment of greenhouse gases (GHGs) emitted to and removed from the atmosphere is high on both political and scientific agendas internationally. As increasing international concern and cooperation aim at policy-oriented solutions to the climate change problem, several issues have begun to arise regarding verification and compliance under both proposed and legislated schemes meant to reduce the human-induced global climate impact. The approaches to addressing uncertainty introduced in this article attempt to improve national inventories or to provide a basis for the standardization of inventory estimates to enable comparison of emissions and emission changes across countries. Authors of the accompanying articles use detailed uncertainty analyses to enforce the current structure of the emission trading system and attempt to internalize high levels of uncertainty by tailoring the emissions trading market rules. Assessment of uncertainty can help improve inventories and manage risk. Through recognizing the importance of, identifying and quantifying uncertainties, great strides can be made in the process of Accounting for Climate Change.
Afficher plus [+] Moins [-]Changes in Copper Speciation and Geochemical Fate in Freshwaters Following Sewage Discharges Texte intégral
2007
Sodré, Fernando F. | Grassi, Marco T.
The main factors determining the geochemical fate of copper in urban freshwaters affected by raw sewage discharges were investigated in this work. Water samples from the Iraí and Iguaçu rivers were collected monthly during a 1-year period at two points located upstream and downstream from the city of Curitiba, in Brazil. Results revealed that raw sewage discharges from the heavily urbanized area caused an enhancement of humic-coated suspended solids in the Iguaçu River. In these waters copper is predominantly associated with the humic-coated particles whereas in the Iraí River copper was found primarily in the aqueous phase. The transfer of copper from the aqueous to the solid phase changed its physical speciation along the watercourse. Thus, aspects related to the overall transport of trace metals in watercourses become an important issue to be considered in further studies concerning the effect of sewage discharges on the geochemical speciation and fate of trace metals in urban rivers.
Afficher plus [+] Moins [-]A Sensitive Spectrophotometric Method for Determination of Trace Quantities of Indium in Soil Texte intégral
2007
Połedniok, Justyna
A simple and very sensitive method determining microgram quantities of indium in soil has been developed. The spectrophotometric method (ε = 1.74 x 10⁵ l mol⁻¹ cm⁻¹) based on the mixed complex In (III) with Chrome Azurol S and benzyldodecyldimethylammonium bromide was used for the analysis. A preliminary separation is made by extracting indium into butyl acetate from 5 M HBr solution. The selectivity of indium extraction and determination in the presence of macro- and micro components of soil was studied. Prior reduction of Fe (III) to Fe (II) with ascorbic acid prevents its co-extraction with indium. Indium was determined in synthetic mixtures corresponding to soil compositions and real samples of soil from different agricultural and industrial regions of Poland. The content of indium was found from the calibration graph (in the range, 0.12-0.48 μg/ml; r = 0.9991) obtained after extraction. The precision was satisfactory: % RSD (n = 6) ranged from 2.7 to 8.2. The average indium standard recovery ranged from 95 to 101%. Analysis using an ICP-OES method gave comparable results.
Afficher plus [+] Moins [-]Spatial and Temporal Variability in Dissolved Inorganic Nitrogen Fluxes at the Sediment-Water Interface in Lake Illawarra, Australia Texte intégral
2007
Qu, Wenchuan | Morrison, R. J. | West, R. J. | Su, Chenwei
In this study, benthic flux measurements of inorganic nitrogen (i.e., [graphic removed] , [graphic removed] + [graphic removed] ) were made using a batch incubation system at different stations (i.e., shallow sandy macrophyte and unvegetated beds, and deep central mud) over four seasons in Lake Illawarra, NSW, Australia, to study the influence of different primary producers (i.e., seagrasses, microphytobenthos (MPB) and macroalgae) and/or different sediment types (i.e., sand or mud) on the benthic fluxes. In general, nutrient fluxes displayed typical diel variations, with lower flux out of sediments (release) or enhanced uptake by the sediment in the light, due to the photosynthetic activities of the plant-MPB-sediment community in Lake Illawarra during photosynthetic periods. A distinct seasonal pattern of inorganic-N fluxes was also observed (e.g., the marked difference between summers 2002 and 2003). This may be explained by the seasonal variations in the biomass and activity (growing or decay phases) of MPB, seagrass and macroalgae, which may influence their nutrient assimilation and alter the chemical conditions of surface sediments that influence the benthic geochemical processes and thus benthic nutrient fluxes. On an annual basis, unvegetated sediments displayed net DIN effluxes, while seagrass beds showed a net DIN uptake, and the highest DIN uptakes coincided with the largest standing crop of seagrass and/or macroalgae and the highest levels of benthic community production. This may be due to the enhanced denitrification and/or assimilation activity by rooted plants and macroalgae, and the effect is most efficient during periods of net growth (e.g., in Spring 2002).
Afficher plus [+] Moins [-]The Impact of Rainfall on Flows and Loadings at Georgia's Wastewater Treatment Plants Texte intégral
2007
Mines, Richard O. Jr | Lackey, Laura W. | Behrend, Glen H.
An assessment of influent and effluent data from 24 wastewater treatment plants (WWTPs) in the state of Georgia with design capacities of 37,850 m³/d (10-mgd) or greater was undertaken. Twelve months of operating data from the 2003 calendar year were evaluated. The objectives of the study were to determine the effect of rainfall intensity on the volumetric flow rate to each WWTP and to determine the relationship between flow rate and the influent five-day, biochemical oxygen demand (BOD₅) and total suspended solids (TSS) concentrations. The relationships between rainfall intensity and influent BOD concentration, rainfall intensity and influent TSS concentration, influent BOD loading and effluent BOD concentration, and influent TSS loading and effluent TSS concentration were also evaluated. Moderate to strong correlations were observed between rainfall intensity and volumetric flow rate, volumetric flow rate and influent BOD and TSS concentrations, average monthly rainfall intensity and influent BOD and TSS concentrations, and between influent BOD and TSS loadings and effluent BOD and TSS concentrations. Weak correlations were observed for some of the relationships when applied to the complete data set however, stronger correlations were achieved by performing statistical analyses of variance and pooling subsets of the data. Peaking factors for flows and loadings were similar to those reported in the literature.
Afficher plus [+] Moins [-]Evaluation of Biodegradability and Biodegradation Kinetics for Anionic, Nonionic, and Amphoteric Surfactants Texte intégral
2007
Sharvelle, Sybil | Lattyak, Rebecca | Banks, M Katherine
The biodegradation kinetics of anionic (sodium laureth sulfate - SLES), amphoteric (disodium cocoamphodiacetate - DSCADA), and nonionic surfactants (polyalcohol ethoxylate - PAE) were assessed in this laboratory study. Similar degradation behavior was observed for all surfactants with only a fraction of the parent compound readily biodegradable. Biodegradation, as estimated by COD removal, was initially (i.e., within 24 h) rapid, however only 40-70% of the surfactant molecules were readily biodegradable. Intrinsic kinetic parameters were successfully quantified for the readily biodegradable component of the surfactant. Inhibition was not observed and microbial kinetics of SLES, DSCADA, and PAE degradation fit the Monod model well. Average μ-S curves were generated for each surfactant. Based on these results, complete degradation of the target surfactants using biological waste treatment would be limited.
Afficher plus [+] Moins [-]Effect of Bioaccumulation of Cs and Sr Natural Isotopes on Foliar Structure and Plant Spectral Reflectance of Indian Mustard (Brassica Juncea) Texte intégral
2007
Su, Yi | Maruthi Sridhar, B. B. | Han, F. X. | Diehl, S. V. | Monts, D. L.
The objectives of this study are: (1) Evaluate the capacity of Indian mustard (Brassica juncea) for uptake and accumulation of Cs and Sr natural isotopes. (2) Identify foliar structural and other physiological changes (biomass, relative water content etc.) resulted from the accumulation of these two elements. (3) Monitor the Cs and Sr uptake and bioaccumulation process by spectral reflectance. Potted Indian mustard plants were exposed to different concentrations of Cs (50 and 600 ppm) and Sr (50 and 300 ppm) natural isotopes in solution form for 23 days. Bioaccumulation of Cs and Sr were found in the order of leaves > stems > roots for both Cs- and Sr-treated plants. The highest leaf and root Sr accumulations are observed to be 2,708, and 1,194 mg kg⁻¹, respectively; and the highest leaf and root Cs accumulations are 12,251, and 6,794 mg kg⁻¹, respectively. High translocation efficiency for both elements is documented by shoot/root concentration ratios greater than one. Biomass decreases were observed for plants treated with higher concentration of Cs or Sr. Cs accumulation affected the pigment concentration and internal structure of the leaf and the spectral characteristics of plants. Within the applied concentration range, Sr accumulation resulted in no significant changes in relative water content (RWC), leaf structural and spectral characteristics of mustard plants. Cs shoot concentration showed significant negative correlation with relative water content (RWC; r = −0.88*) and normalized difference vegetative index (NDVI) value (r = −0.68*) of plant shoots. The canopy spectral reflectance and NDVI analysis clearly revealed (p < 0.05) the stress caused by Cs accumulation.
Afficher plus [+] Moins [-]