Affiner votre recherche
Résultats 3181-3190 de 4,937
Urea/ZnCl2 in situ hydrothermal carbonization of Camellia sinensis waste to prepare N-doped biochar for heavy metal removal Texte intégral
2019
Guo, Shasha | Gao, Yuefang | Wang, Yancheng | Liu, Zhengjun | Wei, Xingneng | Peng, Pai | Xiao, Bin | Yang, Yajun
Environmental benefits of biochar require a simple and effective method for preparation of functional N-doped biochar. In this study, urea/ZnCl₂ was developed to prepare N-doped biochar via in situ hydrothermal carbonization (HTC) of Camellia sinensis waste at 120–280 °C for 2 h under 1.0–9.8 MPa. Physicochemical and structural properties of the N-doped biochar were investigated by Raman spectra, elemental analysis, BET surface area, SEM, TEM, XRD, and XPS. The results showed that the N content in biochar could reach up to 7.79% at 280 °C. Surface chemistry suggested that pyridinic N, pyrollic N, and graphitic N were the major N species on the biochar. Moreover, the N-doped biochar was successfully employed to remove metal ions Cu²⁺, Pb²⁺, Zn²⁺, and Cr⁶⁺. Adsorption data fit closely to the pseudo-second-order kinetic equation and the Langmuir adsorption isotherm model for all metal ions.
Afficher plus [+] Moins [-]The viscosity behaviors of bacterial suspensions or extracellular polymeric substances and their effects on aerobic granular sludge Texte intégral
2019
Yang, Xilan | Xu, Tianguang | Cao, Pei | Qiao, Kai | Wang, Lei | Zhao, Tingting | Shu, Ken'ei
Although the viscosity behavior of bacteria and extracellular polymeric substances (EPS) in flocculent activated sludge (FAS) and aerobic granular sludge (AGS) has been investigated, no studies have explored the role of viscosity in microbial attachment in pure culture. This study investigated the viscosity behavior of bacteria and EPS. The results showed that bacteria and their EPS exhibited non-Newtonian fluid and shear-thinning behavior. The viscosity of bacteria and EPS was 1.55–3.80 cP and 1.10–2.40 cP, respectively, while the attachment of bacteria (optical density at 600 nm) was 0.1426–3.1015. Bacteria with high attachment secreted EPS with a higher viscosity (2.40 cP), whereas those with weak attachment expressed EPS with a lower viscosity (1.10 cP). Viscosity and microbial attachment or extracellular polysaccharide (PS) content were significantly positively correlated. PS content was the source of bacterial viscosity, and β-polysaccharide played a more important role in viscosity and microbial attachment than α-polysaccharide. Thus, viscosity plays a critical role in microbial attachment, and high viscosity and PS content result in high microbial attachment, which is beneficial to the granulation process of AGS.
Afficher plus [+] Moins [-]Silver prices and solar energy production Texte intégral
2019
Apergis, Iraklis | Apergis, Nicholas
The goal of this paper is to identify, for the first time, the role of solar production in driving silver prices. The empirical analysis makes use of the ARDL model and the combined cointegration. The results, spanning the period 1990–2016, document that stronger solar installed capacities, as well as higher gross electricity production from solar sources, lead to higher silver prices. The findings could be of great importance to silver suppliers and to energy policymakers and regulators, as well as to solar panel manufacturers.
Afficher plus [+] Moins [-]Co-exposure to environmental endocrine disruptors in the US population Texte intégral
2019
Chen, Lin | Luo, Kai | Etzel, Ruth | Zhang, Xiaoyu | Tian, Ying | Zhang, Jun
Exposure to environmental endocrine disruptors (EEDs) has been linked to adverse health outcomes. The vast majority of studies examined one class of EEDs at a time but humans often are exposed to multiple EEDs at the same time. It is, therefore, important to know the co-exposure status of multiple EEDs in an individual, to preclude and control for potential confounding effects posed by co-exposed EEDs. This study examined the concentrations of seven classes of EEDs in the US population utilizing the data from the National Health and Nutrition Examination Survey (NHANES), 2009–2014 survey cycles. We applied linear correlation and cluster analysis to characterize the correlation profile and cluster patterns of these EEDs. We found that EEDs with a similar structure are often highly correlated. Among between-class correlations, mercury and perfluoroalkyl substances (PFAS) and cadmium and polycyclic aromatic hydrocarbons (PAHs) were two significantly correlated EEDs. In epidemiologic studies, measurement and control for co-exposure to pollutants, especially those with similar biological effects, are critical when attempting to make causal inferences. Appropriate statistical methods to handle within- and between-class correlations are needed.
Afficher plus [+] Moins [-]Water pollution and observation of acquired antibiotic resistance in Bayou Lafourche, a major drinking water source in Southeast Louisiana, USA Texte intégral
2019
Bird, Kyle | Boopathy, Raj | Nathaniel, Rajkumar | LaFleur, Gary
Antibiotics are known to enter the environment, not only by human excretion but also through livestock/aquaculture, healthcare facilities, and pharmaceutical industry waste. Once in the environment, antibiotics have the ability to provide a selective pressure in microbial communities thus selecting for resistance. Bayou Lafourche of Southeastern Louisiana serves as the raw source of drinking water for 300,000 people in the region and has previously been shown to receive high amounts of fecal contamination. Four sites along the bayou and one site from its input source on the Mississippi River were monitored for water chemistry, total and fecal coliform estimates, and presence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) for a period of 1 year. Four waste-associated bacterial isolates were tested for resistance to antibiotics (tetracycline, sulfamethoxazole/trimethoprim, cefoxitin, meropenem, imipenem, erythromycin, and vancomycin). Resistant bacteria were further examined with PCR/electrophoresis to confirm the presence of antibiotic resistance genes (Sul1, tet(A), tet(W), tet(X), IMP, KPC, and OXA-48). The bayou appears to meet the Louisiana Department of Environmental Quality (LDEQ) criteria for water chemistry, yet fecal coliforms were consistently higher than LDEQ thresholds, thus indicating fecal contamination. Enterobacteriaceae isolates showed 13.6%, 10.9%, and 19.8% resistant to tetracycline, sulfamethoxazole/trimethoprim, and cefoxitin, respectively, and 11 isolates were confirmed for presence of either tet(A) or Sul1 resistance genes. High fecal coliforms and presence of ARB/ARG may both indicate a presence of anthropogenic or agricultural source of fecal contamination.
Afficher plus [+] Moins [-]Different pollutant removal efficiencies of artificial aquatic plants in black-odor rivers Texte intégral
2019
Chen, Qingfeng | Yang, Zhao | Qi, Kemei | Zhao, Changsheng
Black-odor rivers have become a prominent environmental problem, especially for developing countries. A laboratory experiment was conducted to determine the optimum operating parameters of artificial aquatic plants (AAP) to provide a theoretical and scientific basis for their application in black-odor rivers. The purification mechanism of operating parameters for AAP was also explored at the micro-organic and genetic levels by high-throughput sequencing. Chemical oxygen demand (COD) and ammonia nitrogen (NH₄⁺-N) were measured in systems with different AAP lengths and pH. After 24 days, the best removal efficiencies of APP for COD and NH₄⁺-N were 90.07 and 82.40% for 100 cm and 90.70 and 91.90% for pH values of 8.0–9.0, respectively. High-throughput sequencing analysis revealed that the relative abundance of Flavobacterium in the AAP was 7.80% at 50 cm, while the proportion increased to 29.30% at 100 cm. The abundance of microorganisms improved continuously with increased length, and the ratio of Acinetobacter increased obviously at pH 8.0–9.0 relative to pH 6.0–7.0. Furthermore, the AAP were used in Qihe Artificial Wetland in Shandong Province, China. The results revealed that the average removal efficiencies of AAP for COD and NH₄⁺-N were 27.75 and 14.34%, respectively, in the artificial wetland. Therefore, AAP was beneficial to the growth of bacteria and could be used in the treatment of black-odor rivers.
Afficher plus [+] Moins [-]Role of plant growth–promoting rhizobacterial consortium in improving the Vigna radiata growth and alleviation of aluminum and drought stresses Texte intégral
2019
Silambarasan, Sivagnanam | Logeswari, Peter | Cornejo, Pablo | Rajesh Kannan, Velu
Aluminum (Al) is a major constraint for plant growth by inducing inhibition of root elongation in acid soils around the world. Besides, drought is another major abiotic stress that adversely affects growth and productivity of agricultural crops. The plant growth–promoting (PGP) rhizobacterial strains are useful choice to decrease these stressful effects and is now extensively in practice. However, the use of bacterial inoculation has not been attempted for the mitigation of Al stress in plants growing at high Al levels under drought stress. Therefore, in the present study, Al- and drought-tolerant bacterial strains were isolated from Lactuca sativa and Beta vulgaris rhizospheric soils. Among the bacterial isolates, two strains, CAM12 and CAH6, were selected based on their ability to tolerate high levels of Al (8 mM) and drought (15% PEG-6000, w/v) stresses. The bacterial strains CAM12 and CAH6 were identified as Bacillus megaterium and Pantoea agglomerans, respectively, by 16S rRNA gene sequence homology. Moreover, both strains showed multiple PGP traits even in the presence of abiotic stresses. In the pot experiments, inoculation of the strains CAM12 and CAH6 as individually or as included in a consortium improved the Vigna radiata growth under abiotic stress conditions and reduced Al uptake in plants. However, the most effective treatment was seen with bacterial consortium that allowed the plants to tolerate abiotic stress effectively and achieved better growth. These results indicate that bacterial consortium could be used as a bio-inoculant for enhancing V. radiata growth in soil with high Al levels subjected to drought conditions.
Afficher plus [+] Moins [-]Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency Texte intégral
2019
Nguyễn, Phương Minh | Afzal, Muhammad | Ullah, Inaam | Naeem, Shahid | Baqar, Mujtaba | Arslan, Muhammad
Post-industrial era has witnessed significant advancements at unprecedented rates in the field of medicine and cosmetics, which has led to affluent use of pharmaceuticals and personal care products (PPCPs). However, this has exacerbated the influx of various pollutants in the environment affecting living organisms through multiple routes. Thousands of PPCPs of various classes—prescription and non-prescription drugs—are discharged directly into the environment. In this review, we have surveyed literature investigating plant-based remediation practices to remove PPCPs from the environment. Our specific aim is to highlight the importance of plant-bacteria interplay for sustainable remediation of PPCPs. The green technologies not only are successfully curbing organic pollutants but also have displayed certain limitations. For example, the presence of biologically active compounds within plant rhizosphere may affect plant growth and hence compromise the phytoremediation potential of constructed wetlands. To overcome these hindrances, combined use of plants and beneficial bacteria has been employed. The microbes (both rhizo- and endophytes) in this type of system not only degrade PPCPs directly but also accelerate plant growth by producing growth-promoting enzymes and hence remediation potential of constructed wetlands.
Afficher plus [+] Moins [-]Tolerance of native and invasive bivalves under herbicide and metal contamination: an ex vivo approach Texte intégral
2019
El Haj, Yasmin | Bohn, Sofia | Souza, Marta Marques
The literature indicates that exotic species have a greater tolerance to environmental stressors compared with native species. In recent decades, the introduction of contaminants into the environment has increased as a result of industrialization. The objective of this study was to verify the resistance of bivalve mollusks from freshwater native (Anodontites trapesialis) and exotic (Limnoperna fortunei) species to chemical contamination using an ex vivo/in vitro approach. Gill and muscle tissues were exposed to two different types of environmental stressors, copper (metal), and Roundup Transorb® (herbicide). The tissues were submitted to a cytotoxicity test in which the lysosomal integrity was assessed, from the adaptation of a method to isolated cells, and multixenobiotic resistance (MXR) test which evaluated cellular defense. In the exotic species, only copper at 9000 μg/L and Roundup Transorb® at 5000 μg/L were cytotoxic. In the native species, copper cytotoxicity at 900 and 9000 μg/L and Roundup Transorb® at 50 and 5000 μg/L were observed. Results were the same in both tissues. The MXR, responsible for the extrusion of contaminants (cell defense), was inhibited in both species when exposed to the contaminants, this cell defense system seems to be more inhibited in the native species, when exposed to both pollutants, indicating greater sensitivity. Therefore, cytotoxicity may be related to the lack of capacity of cellular defense. In relation to lysosomal integrity, the native species was more sensitive to cytotoxic pollutants, where a greater number of experimental conditions of metals and herbicide showed cytotoxicity, as well as more experimental situations inhibited its ability to defend itself.
Afficher plus [+] Moins [-]Correction to: Occurrence of polybrominated diphenyl ethers in floor and elevated surface house dust from Shanghai, China Texte intégral
2019
Niu, Dong | Qiu, Yanling | Li, Li | Zhou, Yihui | Du, Xinyu | Zhu, Zhiliang | Chen, Ling | Lin, Zhifen
The article Occurrence of polybrominated diphenyl ethers in floor and elevated surface house dust from Shanghai, China, written by Dong Niu, Yanling Qiu, Li Li, Yihui Zhou, Xinyu Du, Zhiliang Zhu, Ling Chen and Zhifen Lin, was originally published electronically on the publisher’s internet portal
Afficher plus [+] Moins [-]