Affiner votre recherche
Résultats 321-330 de 6,548
β-catenin mediates fluoride-induced aberrant osteoblasts activity and osteogenesis Texte intégral
2020
Chu, Yanru | Gao, Yanhui | Yang, Yanmei | Liu, Yang | Guo, Zining | Wang, Limei | Huang, Wei | Wu, Liaowei | Sun, Dianjun | Gu, Weikuan
Excess fluoride in drinking water is an environmental issue of increasing worldwide concern, because of its adverse effect on human health. Skeletal fluorosis caused by chronic exposure to excessive fluoride is a metabolic bone disease characterized by accelerated bone turnover accompanied by aberrant activation of osteoblasts. It is not clear whether Wnt/β-catenin signaling, an important signaling pathway regulating the function of osteoblasts, mediates the pathogenesis of skeletal fluorosis. A cross-sectional case-control study was conducted in Tongyu County, Jilin Province, China showed that fluoride stimulated the levels of OCN and OPG, resulting in accelerated bone turnover in patients with skeletal fluorosis. To investigate the influence of fluoride on Wnt/β-catenin signaling pathway, 64 male BALB/c mice were allotted randomly to four groups and treated with deionized water containing 0, 55, 110 and 221 mg/L NaF for 3 months, respectively. The results demonstrated that fluoride significantly increased mouse cancellous bone formation and the protein expression of Wnt3a, phospho-GSK3β (ser 9) and Runx2. Moreover, partial correlation analysis indicated that there was no significant correlation between fluoride exposure and Runx2 protein levels, after adjusting for β-catenin, suggesting that β-catenin might play a crucial role in fluoride-induced aberrant osteogenesis. In vivo, viability of SaoS2 cells was significantly facilitated by 4 mg/L NaF, and fluoride could induce the abnormal activation of Wnt/β-catenin signaling, the expression of its target gene Runx2 and significantly increased Tcf/Lef reporter activity. Importantly, inhibition of β-catenin suppressed fluoride-induced Runx2 protein expression and the osteogenic phenotypes. Taken together, the present study provided in vivo and in vitro evidence reveals a potential mechanism for fluoride-induced aberrant osteoblast activation and indicates that β-catenin is the pivot molecule mediating viability and differentiation of osteoblasts and might be a therapeutic target for skeletal fluorosis.
Afficher plus [+] Moins [-]Using the compound system to synthetically evaluate the enrichment of heavy metal(loid)s in a subtropical basin, China Texte intégral
2020
Zhang, Hua | Zeng, Huan | Jiang, Yinghui | Xie, Zhenglei | Xu, Xiaoling | Ding, Mingjun | Wang, Peng
A compound system involving three matrices (water, sediment, and paddy soil) was conceived to determine the potential sources of metal(loid)s (Ti, Fe, Co, Ni, Cu, Zn, As, Cd, Pb, and U) and synthetically evaluate their pollution levels in the Le’an River basin. The result indicated that the established background values (BVs) of paddy soil and sediment in the compound system were obviously higher than those of the upper continental crust (UCC) and soils from Jiangxi Province, a difference which was especially marked for sediment. The concentrations of Cu, Zn, As, Cd in the system had high coefficients of variation (CVs), and metal(loid)s in sediment showed higher levels than those in paddy soil, except for Pb. Cd and Cu in the system had the highest Ef levels, which probably pose a high risk to organisms and the health of local residents. There were significantly linear relationships between the site rank index (SRI) for water and that for sediment or paddy soil, revealing that matrices in the system interacted with each other. Principal component analysis (PCA) and absolute principal component scores and multiple linear regression model (APCS-MLR) results demonstrated that Cu, Zn, As, Cu, Pb, and U enrichments in the system were mainly affected by mining activities and were predominately deposited in sediment. Point pollution sources rather than non-point pollution sources such as mining activities, contributed most of the anthropogenic metal(loid)s to sediment. Both SRI and Hierarchical cluster analysis (HCA) results visually showed that S5, S8, S9, S10, S11, and S12 severe pollution grouped together and scattered through areas with extensive mining activities, while other sites with moderate pollution were spread along the main stream of the Le’an River.
Afficher plus [+] Moins [-]Transcriptional profiles and copper stress responses in zebrafish cox17 mutants Texte intégral
2020
Sun, HaoJie | Chen, Mingyue | Wang, Ziyang | Zhao, Guang | Liu, Jing-Xia
While Cox17 functions importantly in copper metalation of cytochrome c oxidase and integral mitochondrial architecture in vertebrates, rare studies have been performed regarding the developmental and physiological characters of vertebrate cox17 mutants. In this study, normal-like developmental phenotype was observed in both cox17Δ6−/− and cox17Δ4−/− homozygous zebrafish mutants, while gene ontology term and pathway analysis of the differentially expressed genes in both mutants showed enrichment in oxidoreductase activity, ion transport, histone methylation, MICOS complex, Wnt signaling, etc. This implied the occurrence of damage to the integral function of Cox17 and change of transcriptomes in the two mutants. Further qRT-PCR and WISH assays revealed the down-regulated expression of Wnt signaling and reduced expression of swim bladder marker genes in the two mutants. Moreover, copper stimulation induced no obvious increase in reactive oxygen species (ROS) or in the expression of hemoglobin marker genes, but further reduced the expression of swim bladder marker genes in the mutants. The integral data in this study suggest that: (1) cox17 mutants cannot activate the response of oxidoreductase to copper stimulation; (2) copper depends on the integral function of Cox17 to induce developmental defects in hemoglobin rather than swim bladder and (3) Wnt signaling but not ROS might mediate copper-induced swim bladder developmental defects in fish.
Afficher plus [+] Moins [-]Trace element analysis reveals bioaccumulation in the squid Gonatus fabricii from polar regions of the Atlantic Ocean Texte intégral
2020
Lischka, A. | Lacoue-Labarthe, T. | Bustamante, P. | Piatkowski, U. | Hoving, H.J.T.
The boreoatlantic gonate squid (Gonatus fabricii) represents important prey for top predators—such as marine mammals, seabirds and fish—and is also an efficient predator of crustaceans and fish. Gonatus fabricii is the most abundant cephalopod in the northern Atlantic and Arctic Ocean but the trace element accumulation of this ecologically important species is unknown. In this study, trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) were analysed from the mantle muscle and the digestive gland tissue of juveniles, adult females, and adult males that were captured south of Disko Island off West-Greenland. To assess the feeding habitat and trophic position of this species, stable isotopes of carbon (δ13C) and nitrogen (δ15N) were measured in their muscle tissue. Mercury concentrations were positively correlated with size (mantle length) and trophic position. The Hg/Se ratio was assessed because Se has been suggested to play a protective role against Hg toxicity and showed a molar surplus of Se relative to Hg. Cadmium concentrations in the digestive gland were negatively correlated with size and trophic position (δ15N), which suggested a dietary shift from Cd-rich crustaceans towards Cd-poor fish during ontogeny. This study provides trace element concentration data for G. fabricii from Greenlandic waters, which represents baseline data for a northern cephalopod species. Within West-Greenland waters, G. fabricii appears to be an important vector for the transfer of Cd in the Arctic pelagic food web.
Afficher plus [+] Moins [-]Development and validation of a UHPLC-MS/MS method for the identification of irinotecan photodegradation products in water samples Texte intégral
2020
Gosetti, Fabio | Belay, Masho Hilawie | Marengo, Emilio | Robotti, Elisa
Irinotecan (CPT-11) is a water-soluble anticancer drug widely used to treat several types of cancer.Even if the metabolites of CPT-11 are well-known and investigated, only limited information is available in the literature about the formation of photo-degradation products that can naturally originate from sunlight irradiation when the drug is released in aqueous systems.CTP-11 solutions at 10.0 mg L−1 were irradiated by simulated sunlight. The intensity of the drug decreased by 90% after 7.5 days of irradiation and no significant reduction of absorbance values was observed after 13 days.A sensitive UHPLC-MS/MS method was developed employing a hybrid triple quadrupole/linear ion trap mass spectrometer, that is able to work in data-dependent acquisition mode and to obtain information about the compounds formed during the photoirradiation. Moreover, a selected reaction monitoring method was built using the MS/MS fragmentation pattern of the compounds previously investigated. The method was validated considering LOD, LOQ, linearity, precision, selectivity, recovery and matrix effect. LOD and LOQ values were 0.02 and 0.05 ng mL−1, respectively, whereas MDL and MQL values in real water samples (river water, groundwater, well water, and wastewater) were lower than 0.05 and 0.2 ng mL−1, respectively.Eight photodegradation products were identified, among which five for the first time. Based on the MS and MS/MS fragmentation, the chemical structures of the degradation products were proposed. Hydrolysis experiments were carried out on the same solutions preserved in the dark, but no formation of other species was highlighted.The method was applied to several real samples: CPT-11 was detected and quantified only in a hospital effluent sample at the concentration of 0.41 ± 0.2 ng mL−1 together with the occurrence of PDP3.The outcomes of this study may be useful for updating the pollutant screening in water samples.
Afficher plus [+] Moins [-]A non-invasive method to monitor marine pollution from bacterial DNA present in fish skin mucus Texte intégral
2020
Montenegro, Diana | Astudillo-García, Carmen | Hickey, Tony | Lear, Gavin
Marine coastal contamination caused by human activity is a major issue worldwide. The implementation of effective pollution monitoring programs, especially in coastal areas, is important and urgent. The use of biological, physiological, or biochemical measurements to monitor the impacts of pollution has garnered increasing interest, particularly for the development of new non-invasive tools to assess water pollution. Fish skin mucus is in direct contact with the marine environment, making it a favourable microenvironment for the formation of biofilm bacterial communities. In this study, we developed a non-invasive technique, sampling fish skin mucus to determine and analyse bacterial community composition using next-generation sequencing. We hypothesised that bacterial communities associated with the skin mucus of a common harbour benthic blennioid triplefin fish, Forsterygion capito, would reflect conditions of different marine environments. We detected clear differences in bacterial community alpha-diversity between contaminated and reference sites. Beta-diversity analysis also revealed differences in the bacterial community structure of the skin mucus of fish inhabiting different geographical areas. The relative abundance of different bacterial orders varied among sites, as determined by linear discriminant analysis (LDA) and effect size (LEfSe) analyses. The observed variation in bacterial community compositions correlated more strongly with variation in hydrocarbons than to various metal concentrations. Using advanced DNA sequencing technologies, we have developed a novel non-invasive, low-cost and effective tool to monitor the impacts of pollution through analysis of the bacterial communities associated with fish skin mucus.
Afficher plus [+] Moins [-]Variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers: An assessment of the role of dissolved organic matter components and microbiota Texte intégral
2020
Chen, Hao | Ye, Jianfeng | Zhou, Yafei | Wang, Zhongning | Jia, Qilong | Nie, Yunhan | Li, Lei | Liu, Hui | Benoit, Gaboury
Variations in methane (CH₄) and carbon dioxide (CO₂) emissions in municipal sewer driven by pollution sources are complex and multifaceted. It is important to investigate the role of dissolved organic matter (DOM) components and microbiota to better understand what and how those variations occurred. For this purpose, this study provides a systematic assessment based on short-term in-sewer conditioned cultivations, in conjunction with a field survey in four typical sewers in Shanghai Megacity. The results are as follows: (1) Sediment plays a main role in driving the sewer carbon emission behavior owing to its strong associations with the utilized substrates and predominant microbes that significantly promoted the gas fluxes (genera Bacteroidete_vadinHA17, Candidatus_competibacter, and Methanospirillum). (2) Aquatic DOM in overlying water is an indispensable factor in promoting total carbon emissions, yet the dominant microbes present there inversely correlated with gas fluxes (genera Methanothermobacter and Bacteroides). (3) The total fluxes of both CH₄ and CO₂ enhanced by pavement runoff were limited. Its high COD-CH₄/CO₂ conversion efficiencies can be ascribed to its dominant anthropogenic humic-like components and the emerged aquatic tyrosine-like components. (4) Domestic sewage can significantly enhance the total fluxes because of its high concentration of bioavailable DOM. However, these substrates, which were more suitable for supporting microbial growth, as well as the substrate competition caused by sulfate reduction and the nitrogen cycle (revealed by the dominant functional microbes genera Acinetobacter, Pseudomonas, Dechloromona, and Candidatus_competibacter and their correlations with indicators), seemed to be responsible for the low COD-CH₄/CO₂ conversion efficiencies of domestic sewage. (5) A field survey indicated the distinct features of carbon emissions of sewer sewage discharged from different catchments. An extreme hydraulic condition in a sewer in the absence of influent showed unexpectedly high levels of CO₂, while a small amount of CH₄ emissions.
Afficher plus [+] Moins [-]Trichoderma asperellum reduces phoxim residue in roots by promoting plant detoxification potential in Solanum lycopersicum L Texte intégral
2020
Chen, Shuangchen | Yan, Yaru | Wang, Yaqi | Wu, Meijuan | Mao, Qi | Chen, Yifei | Ren, Jingjing | Liu, Airong | Lin, Xiaomin | Ahammed, Golam Jalal
Phoxim, a broad-spectrum organophosphate pesticide, is widely used in agriculture to control insect pests in vegetable crops as well as in farm mammals. However, the indiscriminate use of phoxim has increased its release into the environment, leading to the contamination of plant-based foods such as vegetables. In this study, we investigated the effect of Trichoderma asperellum (TM, an opportunistic fungus) on phoxim residue in tomato roots and explored the mechanisms of phoxim metabolism through analysis of detoxification enzymes and gene expression. Degradation kinetics of phoxim showed that TM inoculation rapidly and significantly reduced phoxim residues in tomato roots. Phoxim concentrations at 5d, 10d and 15d post treatment were 75.12, 65.71 and 77.45% lower in TM + phoxim than only phoxim treatment, respectively. The TM inoculation significantly increased the glutathione (GSH) content, the activity of glutathione S-transferase (GST) and the transcript levels of GSH, GST1, GST2 and GST3 in phoxim-treated roots. In addition, the activity of peroxidase and polyphenol peroxidase involved in the xenobiotic conversion also increased in TM + phoxim treatment. The expression of detoxification genes, such as CYP724B2, GR, ABC2 and GPX increased by 3.82, 3.08, 7.89 and 2.46 fold, respectively in TM + phoxim compared with only phoxim. Similarly, the content of ascorbate (AsA) and the ratio of AsA to dehydroascorbate increased by 45.16% and 57.34%, respectively in TM + phoxim-treated roots. Our results suggest that TM stimulates plant detoxification potential in all three phases (conversion, conjugation and sequestration) of xenobiotc metabolism, leading to a reduced phoxim residue in tomato roots.
Afficher plus [+] Moins [-]Effects of soil nutrient variability and competitor identify on growth and co-existence among invasive alien and native clonal plants Texte intégral
2020
Zhao, Cong-Ying | Liu, Yuanyuan | Shi, Xue-Ping | Wang, Yong-Jian
Changes in soil nutrients variability could significantly interact with other global change processes (such as community dynamics, biological invasion). Global exchange and accumulation of alien species caused environmental and economic threats in the introduced ranges. Their invasion success or not in local plant communities is largely depended on the interactions and competitive outcomes with other species and environmental conditions. Here, we tested whether the interactions of nutrient variability and competitor identity influence plant performance, potential invasion success of invasive species and their co-existence with native species. In both greenhouse and field experiment, we subjected three congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China to different nutrient variability (constant high, multiple pulses and/or single pulse) and competitor identity (intra-specific competitors, native competitors, invasive competitors and both native & invasive competitors). Our results showed that total biomass or the increase of cover of invasive species was significantly larger than those of the native species regardless of competitor identity. Native competitors significantly decreased biomass proportion of native species, but did not affect that of invasive species. The whole community with invasive target species accumulated more total biomass than with native species under multiple pulses nutrient when with the native competitors. Invasive species produced significantly higher biomass proportion than natives under all competitor identity treatments except for native & invasive competitors. Multiple mixed competitors (i.e. native & invasive competitors) decreased the plant performance and dominance of invasive target species, to some extent, thus construction of multi-species competition might facilitate coexistence of native and invasive species in communities. Interactions between native competitors or native & invasive competitors, and nutrient variability play important roles in plant performance and potential invasion success in communities. Multiple invasional interference may have significant implications for the co-existence of invasive and native species, and for management of invasive species.
Afficher plus [+] Moins [-]Exposure of polychlorinated naphthalenes (PCNs) to Pakistani populations via non-dietary sources from neglected e-waste hubs: A problem of high health concern Texte intégral
2020
Waheed, Sidra | Khan, Muhammad Usman | Sweetman, A. J. (Andrew J.) | Jones, K. C. (Kevin C.) | Moon, Hyo-Bang | Malik, Riffat Naseem
To date limited information’s are available concerning unintentional productions, screening, profiling, and health risks of polychlorinated naphthalenes (PCNs) in ambient environment and occupational environment. Literature reveals that dust is a neglected environmental matrix never measured for PCNs. To our knowledge, this is the first study to investigate the concentrations and health risks of PCNs in indoor dust, air, and blood of major e-waste recycling hubs in Pakistan. Indoor air (n = 125), dust (n = 250), and serum (n = 250) samples were collected from five major e-waste hubs and their vicinity to measure 39 PCN congeners using GC-ECNI-MS. ∑₃₉PCN concentrations in indoor air, dust, and serum (worker > resident > children) samples ranged from 7.0 to 9583 pg/m³, from 0.25 to 697 ng/g, and from 0.15 to 401 pg/g lipid weight, respectively. Predominant PCN congeners in indoor air and dust were tri- and tetra-CNs, while tetra- and penta-CNs were dominant in human serum samples. The higher PCNs contribution was recorded at the recycling units, while the lower was observed at the shops of the major e-waste hubs. Higher contribution of combustion origin CNs in air, dust and human samples showed combustion sources at the major e-waste hubs, while Halowax and Aroclor based technical mixture showed minor contribution in these samples. Mean toxic equivalent (TEQ) concentrations of PCNs were 2.79E⁺⁰⁰ pg-TEQ/m³, 1.60E⁻⁰² ng-TEQ/g, 8.11E⁻⁰¹ pg-TEQ/g, 7.14E⁻⁰¹ pg-TEQ/g, and 6.37E⁻⁰¹ pg-TEQ/g for indoor air, dust, and serum samples from workers, residents, and children, respectively. In our study, CNs- 66/67 and −73 in indoor air, dust, and human serum were the great contributors to total TEQ concentrations of PCNs. This first base line data directs government and agencies to implement rules, regulation to avoid negative health outcomes and suggests further awareness in regard of provision of proper knowledge to the target population.
Afficher plus [+] Moins [-]