Affiner votre recherche
Résultats 331-340 de 6,473
Photoassisted degradation of 2,2′,4,4′-tetrabrominated diphenyl ether in simulated soil washing system containing Triton X series surfactants
2020
Huang, Kaibo | Liu, He | He, Jinglei | Li, Yan | Wang, Rui | Tang, Ting | Tao, Xueqin | Yin, Hua | Dang, Zhi | Lu, Guining
This study aims to use ultraviolet (UV) irradiation to decompose polybrominated diphenyl ethers (PBDEs) in the elutes and then reuse the surfactants. The results indicate that UV can remove 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) from surfactant eluents and Triton X series surfactants also can remove BDE-47 from the soil. Triton X-100 (TX-100) is the most promising surfactant during the washing and photodegradation processes. Quench experiments suggest that both ¹O₂ and OH• were involved in the TX-100 decomposition but only ¹O₂ is responsible for the degradation of BDE-47. In analysis of the photoproducts of BDE-47 by Gas Chromatography Mass Spectrum (GC-MS) and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), BDE-47 was mainly debrominated to the lower-brominated BDEs and then oxidized to ring-opening products. The little loss of TX-100 can mainly be attributed to the breakage of polyethylene oxide (PEO) chain. Nevertheless, the washing wastes treated by UV light can exhibit higher solubility for BDE-47 than before, indicating they can be reused for BDE-47 removal from soil. The toxicity assessment experiments were performed using Escherichia coli (E.coli) as an indicator. The results indicate that the removal of BDE-47 by UV irradiation can reduce the toxicity of eluent.
Afficher plus [+] Moins [-]Sodium fluoride exposure triggered the formation of neutrophil extracellular traps
2020
Wang, Jing-Jing | Wei, Zheng-Kai | Han, Zhen | Liu, Zi-Yi | Zhang, Yong | Zhu, Xing-Yi | Li, Xiao-Wen | Wang, Kai | Yang, Zheng-Tao
In recent years, numerous studies paid more attention to the molecular mechanisms associated with fluoride toxicity. However, the detailed mechanisms of fluoride immunotoxicity in bovine neutrophils remain unclear. Neutrophil extracellular traps (NETs) is a novel immune mechanism of neutrophils. We hypothesized that sodium fluoride (NaF) can trigger NETs activation and release, and investigate the related molecular mechanisms during the process. We exposed peripheral blood neutrophils to 1 mM NaF for 120 min in bovine neutrophils. The results showed that NaF exposure triggered NET-like structures decorated with histones and granule proteins. Quantitative measurement of NETs content correlated positively with the concentration of NaF. Mechanistically, NaF exposure increased reactive oxygen species (ROS) levels and phosphorylation levels of ERK, p38, whereas inhibiting the activities of superoxide dismutase (SOD) and catalase (CAT) compared with control neutrophils. NETs formation is induced by NaF and this effect was inhibited by the inhibitors diphenyleneiodonium chloride (DPI), U0126 and SB202190. Our findings described the potential importance of NaF-triggered NETs related molecules, which might help to extend the current understanding of NaF immunotoxicity.
Afficher plus [+] Moins [-]The endoplasmic reticulum stress and related signal pathway mediated the glyphosate-induced testosterone synthesis inhibition in TM3 cells
2020
Xia, Yongpeng | Yang, Xiaobo | Lu, Jingchun | Xie, Qixin | Ye, Anfang | Sun, Wenjun
Glyphosate is the most widely used herbicide in the world. In recent years, many studies have demonstrated that exposure to glyphosate-based herbicides (GHBs) was related to the decrease of serum testosterone and the decline in semen quality. However, the molecular mechanism of glyphosate-induced testosterone synthesis disorders is still unclear. In the present study, the effects of glyphosate on testosterone secretion and the role of endoplasmic reticulum (ER) stress in the process were investigated in TM3 cells. The effects of glyphosate at different concentrations on the viability of TM3 cells were detected by CCK8 method. The effect of glyphosate exposure on testosterone secretion was determined by enzyme-linked immunosorbent assay (ELISA). The expression levels of testosterone synthases and ER stress-related proteins were detected by Western blot and Immunofluorescence stain. Results showed that exposure to glyphosate at concentrations below 200 mg/L had no effect on cell viability, while the glyphosate above 0.5 mg/L could inhibit the testosterone secretion in TM3 cells. Treatment TM3 cells with glyphosate at 5 mg/L not only reduced the protein levels of testosterone synthase StAR and CYP17A1, inhibited testosterone secretion, but also increased the protein level of ER stress molecule Bip and promoted the phosphorylation of PERK and eIF2α. Pretreatment cells with PBA, an inhibitor of ER stress, alleviated glyphosate-induced increase in Bip, p-PERK and p-eIF2α protein levels, meanwhile rescuing glyphosate-induced testosterone synthesis disorders. When pretreatment with GSK2606414, a PERK inhibitor, the glyphosate-induced phosphorylation of PERK and eIF2α was blocked, and the glyphosate-inhibited testosterone synthesis and secretion was also restored. Overall, our findings suggest that glyphosate can interfere with the expression of StAR and CYP17A1 and inhibit testosterone synthesis and secretion via ER stress-mediated the activation of PERK/eIF2α signaling pathway in Leydig cells.
Afficher plus [+] Moins [-]Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils
2020
Fang, Linchuan | Ju, Wenliang | Yang, Congli | Jin, Xiaolian | Liu, Dongdong | Li, Mengdi | Yu, Jialuo | Zhao, Wei | Zhang, Chao
Being signaling molecules, nitric oxide (NO) and hydrogen sulfide (H₂S) can mediate a wide range of physiological processes caused by plant metal toxicity. Moreover, legume-rhizobium symbiosis has gained increasing attention in mitigating heavy metal stress. However, systematic regulatory mechanisms used for the exogenous application of signaling molecules to alter the resistance of legume-rhizobium symbiosis under metal stress are currently unknown. In this study, we examined the exogenous effects of sodium nitroprusside (SNP) as an NO donor additive and sodium hydrosulfide (NaHS) as a H₂S donor additive on the phytotoxicity and soil quality of alfalfa (Medicago sativa)-rhizobium symbiosis in lead/cadmium (Pb/Cd)-contaminated soils. Results showed that rhizobia inoculation markedly promoted alfalfa growth by increasing chlorophyll content, fresh weight, and plant height and biomass. Compared to the inoculated rhizobia treatment alone, the addition of NO and H₂S significantly reduced the bioaccumulation of Pb and Cd in alfalfa-rhizobium symbiosis, respectively, thus avoiding the phytotoxicity caused by the excessive presence of metals. The addition of signaling molecules also alleviated metal-induced phytotoxicity by increasing antioxidant enzyme activity and inhibiting the level of lipid peroxidation and reactive oxygen species (ROS) in legume-rhizobium symbiosis. Also, signaling molecules improved soil nutrient cycling, increased soil enzyme activities, and promoted rhizosphere bacterial community diversity. Both partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) identified that using signaling molecules can improve plant growth by regulating major controlling variables (i.e., soil enzymes, soil nutrients, and microbial diversity/plant oxidative damage) in legume-rhizobium symbiosis. This study offers integrated insight that confirms that the exogenous application of signaling molecules can enhance the resistance of legume-rhizobium symbiosis under metal toxicity by regulating the biochemical response of the plant-soil system, thereby minimizing potential health risks.
Afficher plus [+] Moins [-]The effect of straw-returning on antimony and arsenic volatilization from paddy soil and accumulation in rice grains
2020
Yan, HuiJun | Wang, Xuedong | Yang, Yuping | Duan, GuiLan | Zhang, Hongmei | Cheng, WangDa
Pollution by antimony (Sb) and arsenic (As) in soil can pose a great threat to human health. Straw-returning is widely applied to paddy fields for improving and remediating soil. A pot experiment was conducted to investigate the effect of straw-returning on Sb and As transformation and translocation in a soil–rice system. In this study, Sb and As co-contaminated soil was thoroughly mixed with different proportions (0, 0.5, 1, and 2%) of straw and used for growing rice plants through the entire growing stage in a pot experiment and 4 weeks in a microcosm experiment. The straw application significantly increased Sb and As mobility. The concentrations of total Sb and As in soil-pore water increased after the application of straw in most growing stages. The Sb volatilization in the pot and microcosm experiments was also stimulated by straw application. With the high dose of straw application (2%), the concentration of Sb in brown grain was reduced by 72% compared with the control, but As concentrations increased by around 77%. These findings provide a new perspective in that straw-returning could affect the behavior of both Sb and As in soil and reduce the Sb accumulation in brown grain and some guidance in the use of straw-returning in Sb-contaminated paddy soil.
Afficher plus [+] Moins [-]Tissue-specific bioaccumulation, metabolism and excretion of tris (2-ethylhexyl) phosphate (TEHP) in rare minnow (Gobiocyprisrarus)
2020
Hou, Rui | Xu, Yiping | Rao, Kaifeng | Feng, Chenglian | Wang, Zijian
Tris (2-ethylhexyl) phosphate (TEHP) is one of the most commonly used organophosphorus flame retardant (OPFR) analogues and is commonly detected in surface water and sediments. Limited information is available about the metabolic pathway or metabolite formation related to TEHP in fish. In this study, rare minnows (Gobiocyprisrarus) were exposed to TEHP in static water for 30 d to investigate the bioaccumulation and metabolite distribution in the fish muscle, liver, kidney, gill, GI-tract, ovary and testis. Based on the estimated kᵤₚ,ₚₐᵣₑₙₜ and kd,ₚₐᵣₑₙₜ values, the bioconcentration factors (BCFₚₐᵣₑₙₜ) of TEHP in fish tissues were calculated in the order of kidney > ovary ≈ liver ≈ testis > gill ≈ GI-tract > muscle; this finding was consistent with the results of our previous study on other alkyl-substituted OPFRs. In addition, this study identified the metabolic profiles of TEHP in the liver. TEHP was oxidatively metabolized by the fish to a dealkylated metabolite (di 2-ethylhexyl phosphate; DEHP) and hydroxylated TEHP (OH-TEHP). OH-TEHP further underwent extensive phase II metabolism to yield glucuronic acid conjugates. DEHP was mainly distributed in rare minnow in the following order: liver > GI-tract > kidney ≫ other tissues. However, the metabolite showed lower accumulation potential in fish tissues than TEHP, with metabolite parent concentration factors (MPCFs) for DEHP of less than 0.1 in all the investigated tissues. The BCFₚₐᵣₑₙₜ values of TEHP in various fish tissues were only 9.0 × 10⁻³-7.2 × 10⁻⁴ times its estimated tissue-water partition coefficient (Kₜᵢₛₛᵤₑ₋wₐₜₑᵣ) values based on tissue lipid, protein and water contents, which indicated the significance of biotransformation in reducing the bioaccumulation potential of TEHP in fish. The toxicokinetic data in the present study help in understanding the tissue-specific bioaccumulation and metabolism pathways of TEHP in fish and highlight the importance of toxicology research on TEHP metabolites in aquatic organisms.
Afficher plus [+] Moins [-]Microplastic fibers transfer from the water to the internal fluid of the sea cucumber Apostichopus japonicus
2020
Mohsen, Mohamed | Zhang, Libin | Sun, Lina | Lin, Chenggang | Wang, Qing | Yang, Hongsheng
Microplastics (MPs) are small plastic particles less than 5 mm in diameter. MPs in the form of microfibers (MFs) are widely detected in aquatic habitats and are of high environmental concern. Despite many reports on the effects of MFs on marine animals, their effect on sea cucumbers is still unclear. In addition, our previous filed study has shown that MFs may transfer to the coelomic fluid of the sea cucumber Apostichopus japonicus (A. japonicus). Here, we show how MFs transfer to the coelomic fluid of the sea cucumber. We captured the MFs during their transfer from the water to the coelomic fluid through the respiratory tree. A. japonicus ingested in the MFs along with the water during respiration; the MFs got stuck in the respiratory tree or transferred to the coelomic fluid. The transferred MFs increased during 72 h of exposure and persisted for 72 h after the transfer to clean water. Among the immunity indices, lysozyme (LZM) levels increased in response to the transferred MFs, which confirms the defensive role of LZMs against strange substances. Additionally, non-significantly decreased levels of total antioxidant capacity (T-AOC), malondialdehyde (MDA), peroxidase (POD) and phenol oxidase (PPO) were observed at 24 h and 48 h post-exposure, suggesting minimal oxidative imbalance. Furthermore, there were no significant changes in the speed and the total distance moved by A. japonicus post MFs transfer. This study revealed that MFs transfer and accumulate in the coelomic fluid of A. japonicus.
Afficher plus [+] Moins [-]Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study
2020
Arku, Raphael E. | Bräuer, Michael | Ahmed, Suad H. | AlHabib, Khalid F. | Avezum, Alvaro | Bo, Jian | Choudhury, Tarzia | Dans, Antonio ML. | Gupta, Rajiv | Iqbal, Romaina | Ismail, Noorhassim | Kelishadi, Roya | Khatib, Rasha | Koon, Teo | Kumar, Rajesh | Lanas, Fernando | Lear, Scott A. | Wei, Li | Lopez-Jaramillo, Patricio | Mohan, Viswanathan | Poirier, Paul | Puoane, Thandi | Rangarajan, Sumathy | Rosengren, Annika | Soman, Biju | Caklili, Ozge Telci | Yang, Shunyun | Yeates, Karen | Yin, Lu | Yusoff, Khalid | Zatoński, Tomasz | Yūsuf, Sālim | Hystad, Perry
Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM₂.₅ and household air pollution (HAP) from cooking with solid fuels with BP and hypertension in the Prospective Urban and Rural Epidemiology (PURE) study. Outdoor PM₂.₅ exposures were estimated at year of enrollment for 137,809 adults aged 35–70 years from 640 urban and rural communities in 21 countries using satellite and ground-based methods. Primary use of solid fuel for cooking was used as an indicator of HAP exposure, with analyses restricted to rural participants (n = 43,313) in 27 study centers in 10 countries. BP was measured following a standardized procedure and associations with air pollution examined with mixed-effect regression models, after adjustment for a comprehensive set of potential confounding factors. Baseline outdoor PM₂.₅ exposure ranged from 3 to 97 μg/m³ across study communities and was associated with an increased odds ratio (OR) of 1.04 (95% CI: 1.01, 1.07) for hypertension, per 10 μg/m³ increase in concentration. This association demonstrated non-linearity and was strongest for the fourth (PM₂.₅ > 62 μg/m³) compared to the first (PM₂.₅ < 14 μg/m³) quartiles (OR = 1.36, 95% CI: 1.10, 1.69). Similar non-linear patterns were observed for systolic BP (β = 2.15 mmHg, 95% CI: −0.59, 4.89) and diastolic BP (β = 1.35, 95% CI: −0.20, 2.89), while there was no overall increase in ORs across the full exposure distribution. Individuals who used solid fuels for cooking had lower BP measures compared to clean fuel users (e.g. 34% of solid fuels users compared to 42% of clean fuel users had hypertension), and even in fully adjusted models had slightly decreased odds of hypertension (OR = 0.93; 95% CI: 0.88, 0.99) and reductions in systolic (−0.51 mmHg; 95% CI: −0.99, −0.03) and diastolic (−0.46 mmHg; 95% CI: −0.75, −0.18) BP. In this large international multi-center study, chronic exposures to outdoor PM₂.₅ was associated with increased BP and hypertension while there were small inverse associations with HAP.
Afficher plus [+] Moins [-]Adding a complex microbial agent twice to the composting of laying-hen manure promoted doxycycline degradation with a low risk on spreading tetracycline resistance genes
2020
Liang, Jiadi | Jin, Yiman | Wen, Xin | Mi, Jiandui | Wu, Yinbao
Poultry manure is a reservoir for antibiotics and antibiotic resistance genes and composting is an effective biological treatment for manure. This study explored the effect of using two methods of adding a complex microbial agent to the composting of laying-hen manure on doxycycline degradation and tetracycline resistance genes elimination. The results showed that incorporating a complex microbial agent at 0.8% (w/w) on the 0ᵗʰ and 11th day (group MT2) effectively degraded doxycycline with a final degradation rate of 46.83 ± 0.55%. The half-life of doxycycline in this group was 21.90 ± 0.00 days and was significantly lower than that of group MT1 (1.6% (w/w) complex microbial agent added on the 0ᵗʰ day) and group DT (compost without complex microbial agent). But there was no significant difference in the final degradation rate of doxycycline between group DT and group MT1. The addictive with the complex microbial agent changed the microbial community structure. Bacteroidetes, Firmicutes and Proteobacteria were the dominant phyla during composting. Aerococcus, Desemzia, Facklamia, Lactobacillus, Streptococcus, and Trichococcus were the bacteria related to the degradation of doxycycline. Moreover, the incorporation of a complex microbial agent could decrease the risk on spreading tetracycline resistance genes. The single addition promoted the elimination of tetM, whose possible hosts were Enterococcus, Lactobacillus, Staphylococcus, and Trichococcus. Adding the complex microbial agent twice promoted the elimination of tetX, which was related to the low abundance of Chryseobacterium, Flavobacterium and Neptunomonas in group MT2. Redundancy analysis showed that the bacterial community, residual doxycycline and physiochemical properties have a potential effect on the variation in tetracycline resistance genes levels. Overall, adding the complex microbial agent twice is an effective measure to degrade doxycycline.
Afficher plus [+] Moins [-]Is obesity the missing link between COVID-19 severity and air pollution?
2020
Lubrano, Carla | Risi, Renata | Masi, Davide | Gnessi, Lucio | Colao, Annamaria
In the previous publication “Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?” Conticini et al. hypothesized that the surplus of lethality of the novel SARS-CoV-2 in Northern Italy may be at least in part explained by the evidence of highest pollution reported in this area, as both severe COVID-19 and smog exposure are correlated to an innate immune system hyper-activation with subsequent lung inflammation and injury. Since this hypothesis alone does not fully explain why specific subgroups of patients are at major risk, we hypothesized that obesity may be one of the links between COVID-19 severity and high level of air pollution. First, obesity is a predisposing factor for SARS-Cov-2 infection and worse COVID-19 outcomes, and unequivocal evidence demonstrated that fat mass excess is independently associated with several pulmonary diseases and lung inflammation. Moreover, it has been shown that obesity may intensify the detrimental effects of air pollution on the lungs, and this is not surprising if we consider that these conditions share an excessive activation of the immune system and a lung inflammatory infiltrate. Finally, fat mass excess has also been speculated to be itself a consequence of air pollutants exposure, which has been proved to induce metabolic disruption and weight gain in murine models. In conclusion, although many variables must be taken into account in the analysis of the pandemic, our observations suggest that obesity may act as effect modifier of smog-induced lung-injury, and the concomitant presence of these two factors could better explain the higher virulence, faster spread and greater mortality of SARS-CoV-2 in Northern Italy compared to the rest of the country.
Afficher plus [+] Moins [-]