Affiner votre recherche
Résultats 341-350 de 5,132
Head shape disparity impacts pollutant accumulation in European eel
2018
De Meyer, Jens | Belpaire, Claude | Boeckx, Pascal | Bervoets, Lieven | Covaci, Adrian | Malarvannan, Govindan | De Kegel, Barbara | Adriaens, Dominique
Several aspects of the life cycle of the critically endangered European eel (Anguilla anguilla) remain poorly understood. One such aspect is the broad-versus narrow-head dimorphism, and how this impacts their overall performance at different stages of their life cycle. At the yellow eel stage, the phenotypes show a trophic divergence. We investigated whether pollutant accumulation is affected by this disparity. We show that broad-headed eels contained higher concentrations of mercury and several lipophilic organic pollutants, compared to narrow-headed ones, irrespective of their fat content. The hereby confirmed link between the phenotypic disparity, its associated feeding ecology and its impact on pollutant accumulation thus raises further concerns about their migratory and reproductive success. Considering that pollution is an important contributor to the European eel's decline, our results demonstrate that broad-headed eels are more vulnerable to detrimental pollutant accumulation. This compromises their successful contribution to their population's reproduction and its restoration.
Afficher plus [+] Moins [-]Chronic ingestion of polystyrene microparticles in low doses has no effect on food consumption and growth to the intertidal amphipod Echinogammarus marinus?
2018
Bruck, Sarah | Ford, Alex T.
The ingestion of microplastics (plastic particles <5 mm) has been observed in a range of marine organisms, and adverse effects have been reported in several species after high concentration exposure. However, the long-term effects of low-dose ingestion remains unclear. The aim of this study was thus to assess the chronic effects of low concentrations of polystyrene microparticles to the intertidal amphipod Echinogammarus marinus, using food consumption, growth, and moulting as endpoints. Amphipods were fed a gelatinous algal feed spiked with microbeads (8 μm) in concentrations of ∼0.9, 9 and 99 microplastics/g for 35 days. E. marinus was also analysed for retention of microplastics, and egestion rate was calculated in a separate high-dose feeding experiment. No significant effects were found in the food consumption or growth assays. There was no accumulation of microplastics in the gut, with only one microbead recorded internally in three (8%) of the exposed amphipods. The low number is likely linked to gastrointestinal functions, allowing for easy egestion of indigestible items. This assumption was supported by the observation that after high-dose exposure, 60% of E. marinus egested all microbeads within 24 h. This study suggests that ingesting low concentrations of 8 μm microplastics do not impair the feeding or growth of amphipods along the exposure period. We hope that negative results such as these may further assist in assessing the impact posed by microplastics to marine organisms.
Afficher plus [+] Moins [-]Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay
2018
Bean, Thomas G. | Rattner, Barnett A. | Lazarus, Rebecca S. | Day, Daniel D. | Burket, S Rebekah | Brooks, Bryan W. | Haddad, Samuel P. | Bowerman, William W.
Exposure of wildlife to Active Pharmaceutical Ingredients (APIs) is likely to occur but studies of risk are limited. One exposure pathway that has received attention is trophic transfer of APIs in a water-fish-osprey food chain. Samples of water, fish plasma and osprey plasma were collected from Delaware River and Bay, and analyzed for 21 APIs. Only 2 of 21 analytes exceeded method detection limits in osprey plasma (acetaminophen and diclofenac) with plasma levels typically 2–3 orders of magnitude below human therapeutic concentrations (HTC). We built upon a screening level model used to predict osprey exposure to APIs in Chesapeake Bay and evaluated whether exposure levels could have been predicted in Delaware Bay had we just measured concentrations in water or fish. Use of surface water and BCFs did not predict API concentrations in fish well, likely due to fish movement patterns, and partitioning and bioaccumulation uncertainties associated with these ionizable chemicals. Input of highest measured API concentration in fish plasma combined with pharmacokinetic data accurately predicted that diclofenac and acetaminophen would be the APIs most likely detected in osprey plasma. For the majority of APIs modeled, levels were not predicted to exceed 1 ng/mL or method detection limits in osprey plasma. Based on the target analytes examined, there is little evidence that APIs represent a significant risk to ospreys nesting in Delaware Bay. If an API is present in fish orders of magnitude below HTC, sampling of fish-eating birds is unlikely to be necessary. However, several human pharmaceuticals accumulated in fish plasma within a recommended safety factor for HTC. It is now important to expand the scope of diet-based API exposure modeling to include alternative exposure pathways (e.g., uptake from landfills, dumps and wastewater treatment plants) and geographic locations (developing countries) where API contamination of the environment may represent greater risk.
Afficher plus [+] Moins [-]Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs
2018
Becker, Daniel J. | Chumchal, Matthew M. | Broders, Hugh G. | Korstian, Jennifer M. | Clare, Elizabeth L. | Rainwater, Thomas R. | Platt, Steven G. | Simmons, Nancy B. | Fenton, M Brock
Mercury (Hg) is a persistent and widespread heavy metal with neurotoxic effects in wildlife. While bioaccumulation of Hg has historically been studied in aquatic food webs, terrestrial consumers can become contaminated with Hg when they feed on aquatic organisms (e.g., emergent aquatic insects, fish, and amphibians). However, the extent to which dietary connectivity to aquatic ecosystems can explain patterns of Hg bioaccumulation in terrestrial consumers has not been well studied. Bats (Order: Chiroptera) can serve as a model system for illuminating the trophic transfer of Hg given their high dietary diversity and foraging links to both aquatic and terrestrial food webs. Here we quantitatively characterize the dietary correlates of long-term exposure to Hg across a diverse local assemblage of bats in Belize and more globally across bat species from around the world with a comparative analysis of hair samples. Our data demonstrate considerable interspecific variation in hair total Hg concentrations in bats that span three orders of magnitude across species, ranging from 0.04 mg/kg in frugivorous bats (Artibeus spp.) to 145.27 mg/kg in the piscivorous Noctilio leporinus. Hg concentrations showed strong phylogenetic signal and were best explained by dietary connectivity of bat species to aquatic food webs. Our results highlight that phylogeny can be predictive of Hg concentrations through similarity in diet and how interspecific variation in feeding strategies influences chronic exposure to Hg and enables movement of contaminants from aquatic to terrestrial ecosystems.
Afficher plus [+] Moins [-]Simultaneous determination of (N-ethyl perfluorooctanesulfonamido ethanol)-based phosphate diester and triester and their biotransformation to perfluorooctanesulfonate in freshwater sediments
2018
Zhang, Shiyi | Peng, Hui | Mu, Di | Zhao, Haoqi | Hu, Jianying
While (N-ethyl perfluorooctanesulfonamido ethanol)-based phosphates (SAmPAPs) have been proposed as a group of perfluorooctanesulfonate (PFOS) precursors, investigation of their occurrence and fate has been limited to SAmPAP diester. In this study, SAmPAP diester and triester were simultaneously determined in freshwater sediment from Taihu Lake using a newly developed UPLC-MS/MS method, and their biotransformation to PFOS in lake sediment was investigated. SAmPAP diester and triester were detected in sediments with a detection frequency of 56% and 88%, and their mean concentrations were 0.24 ± 0.11 ng/g dry weight (dw) and 0.12 ± 0.03 ng/g dw, respectively. The SAmPAP diester/triester ratio in sediment was 1.1 ± 4.2, much lower than that (6.7) observed in the technical product, and the positive correlation was found between the concentrations of SAmPAP diester and PFOS in sediments (r² = 0.45, p = 0.01), suggesting that SAmPAP diester would be biotransformed to PFOS in the lake sediment. The microbial degradation test in the lake sediments further clarified that SAmPAP diester was biodegraded to PFOS, but SAmPAP triester was highly recalcitrant to microbial degradation. This study suggests that the occurrence of SAmPAP diester in freshwater lake sediments may be an important precursor of PFOS.
Afficher plus [+] Moins [-]Aqueous and organic extract of PM2.5 collected in different seasons and cities of Japan differently affect respiratory and immune systems
2018
Chowdhury, Pratiti Home | Okano, Hitoshi | Honda, Akiko | Kudou, Hitomi | Kitamura, Gaku | Ito, Sho | Ueda, Kayo | Takano, Hirohisa
Particulate matter with diameters <2.5 μm (i.e., PM₂.₅) has multiple natural and anthropological sources. The association between PM₂.₅ and the exacerbation of respiratory allergy and asthma has been well studied, but the components of PM₂.₅ that are responsible for allergies have not yet been determined. Here, we elucidated the effects of aqueous and organic extract of PM₂.₅ collected during four seasons in November 2014–December 2015 in two cities (Kawasaki, an industrial area and Fukuoka, an urban area affected by transboundary pollution matter) of Japan on respiratory health. Ambient PM₂.₅ was collected by high-volume air samplers and extracted into water soluble and lipid soluble components. Human airway epithelial cells, murine bone marrow-derived antigen-presenting cells (APC) and splenocytes were exposed to PM₂.₅ extracts. We measured the cell viability and release of interleukin (IL)-6 and IL-8 from airway epithelial cells, the DEC205 and CD86 expressions on APCs and cell proliferation, and TCR and CD19 expression on splenocytes. The water-soluble or aqueous extracts, especially those from Kawasaki in fall, had a greater cytotoxic effect than the lipid-soluble or organic extracts in airway epithelial cells, but they caused almost no pro-inflammatory response. Extract of fall, especially the aqueous extract from Fukuoka, increased the DEC205 and CD86 expressions on APC. Moreover, aqueous extracts of fall, summer, and spring from Fukuoka significantly increased proliferation of splenocytes. Organic extract of spring and summer from Kawasaki significantly elevated the TCR expression, and organic extract of summer from Kawasaki decreased the CD19 expression. These results suggest that PM₂.₅ extract samples are responsible for cytotoxicity in airway epithelial cells and for activating APCs and T-cells, which can contribute to the exacerbation of respiratory diseases such as asthma. These effects can differ by PM₂.₅ components, collection areas and seasons.
Afficher plus [+] Moins [-]Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China
2018
Liu, Jun | Chen, Xi | Shu, Hao-yue | Lin, Xue-rui | Zhou, Qi-xing | Bramryd, Torleif | Shu, Wen-sheng | Huang, Li-nan
The release of toxic organic pollutants and heavy metals by primitive electronic waste (e-waste) processing to waterways has raised significant concerns, but little is known about their potential ecological effects on aquatic biota especially microorganisms. We characterized the microbial community composition and diversity in sediments sampled along two rivers consistently polluted by e-waste, and explored how community functions may respond to the complex combined pollution. High-throughput 16S rRNA gene sequencing showed that Proteobacteria (particularly Deltaproteobacteria) dominated the sediment microbial assemblages followed by Bacteroidetes, Acidobacteria, Chloroflexi and Firmicutes. PICRUSt metagenome inference provided an initial insight into the metabolic potentials of these e-waste affected communities, speculating that organic pollutants degradation in the sediment might be mainly performed by some of the dominant genera (such as Sulfuricurvum, Thiobacillus and Burkholderia) detected in situ. Statistical analyses revealed that toxic organic compounds contributed more to the observed variations in sediment microbial community structure and predicted functions (24.68% and 8.89%, respectively) than heavy metals (12.18% and 4.68%), and Benzo(a)pyrene, bioavailable lead and electrical conductivity were the key contributors. These results have shed light on the microbial assemblages in e-waste contaminated river sediments, indicating a potential influence of e-waste pollution on the microbial community structure and function in aquatic ecosystems.
Afficher plus [+] Moins [-]In vitro effects of virgin microplastics on fish head-kidney leucocyte activities
2018
Espinosa, Cristóbal | García Beltrán, José María | Esteban, María Angeles | Cuesta Arranz, Alberto
Microplastics are well-documented pollutants in the marine environment that result from production or fragmentation of larger plastic items. The knowledge about the direct effects of microplastics on immunity, including fish, is still very limited. We investigated the in vitro effects of microplastics [polyvinylchloride (PVC) and polyethylene (PE)] on gilthead seabream (Sparus aurata) and European sea bass (Dicentrarchus labrax) head-kidney leucocytes (HKLs). After 1 and 24 h of exposure of HKLs with 0 (control), 1, 10 and 100 mg mL⁻¹ MPs in a rotatory system, cell viability, innate immune parameters (phagocytic, respiratory burst and peroxidase activities) and the expression of genes related to inflammation (il1b), oxidative stress (nrf2, prdx3), metabolism of xenobiotics (cyp1a1, mta) and cell apoptosis (casp3) were studied. Microplastics failed to affect the cell viability of HKLs. In addition, they provoke very few significant effects on the main cellular innate immune activities, as decrease on phagocytosis or increase in the respiratory burst of HKLs with the highest dose of microplastics tested. Furthermore, microplastics failed to affect the expression of the selected genes on sea bass or seabream, except the nrf2 which was up-regulated in seabream HKLs incubated with the highest doses. Present results seem to suggest that continue exposure of fish to PVC or PE microplastics could impair fish immune parameters probably due to the oxidative stress produced in the fish leucocytes.
Afficher plus [+] Moins [-]Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model
2018
He, Qingqing | Huang, Bo
Ground fine particulate matter (PM2.5) concentrations at high spatial resolution are substantially required for determining the population exposure to PM2.5 over densely populated urban areas. However, most studies for China have generated PM2.5 estimations at a coarse resolution (≥10 km) due to the limitation of satellite aerosol optical depth (AOD) product in spatial resolution. In this study, the 3 km AOD data fused using the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 AOD products were employed to estimate the ground PM2.5 concentrations over the Beijing-Tianjin-Hebei (BTH) region of China from January 2013 to December 2015. An improved geographically and temporally weighted regression (iGTWR) model incorporating seasonal characteristics within the data was developed, which achieved comparable performance to the standard GTWR model for the days with paired PM2.5- AOD samples (Cross-validation (CV) R2 = 0.82) and showed better predictive power for the days without PM2.5- AOD pairs (the R2 increased from 0.24 to 0.46 in CV). Both iGTWR and GTWR (CV R2 = 0.84) significantly outperformed the daily geographically weighted regression model (CV R2 = 0.66). Also, the fused 3 km AODs improved data availability and presented more spatial gradients, thereby enhancing model performance compared with the MODIS original 3/10 km AOD product. As a result, ground PM2.5 concentrations at higher resolution were well represented, allowing, e.g., short-term pollution events and long-term PM2.5 trend to be identified, which, in turn, indicated that concerns about air pollution in the BTH region are justified despite its decreasing trend from 2013 to 2015.
Afficher plus [+] Moins [-]Re-evaluation of stability and toxicity of silver sulfide nanoparticle in environmental water: Oxidative dissolution by manganese oxide
2018
Shi, En | Xu, Zhenlan | Zhang, Xiaoxia | Yang, Xuezhi | Liu, Qian | Zhang, Hangjun | Wimmer, Andreas | Li, Lingxiangyu
Stability of silver sulfide nanoparticle (Ag₂S-NP) in the environment has recently drawn considerable attention since it is associated with environmental risk. Although the overestimated stability of Ag₂S-NP in aqueous solution has already been recognized, studies on transformation of Ag₂S-NP in environmental water are still very scarce. Here we reported that Ag₂S-NP could undergo dissolution by manganese(IV) oxide (MnO₂), an important naturally occurring oxidant in the environment, even in environmental water, although the dissolved silver would probably be adsorbed onto the particles (>0.45 μm) in environmental water, mitigating the measurable levels of dissolved silver. The extent and rate of Ag₂S-NP dissolution rose with the increasing concentration of MnO₂. In addition, environmental factors including natural organic matter, inorganic salts and organic acids could accelerate the Ag₂S-NP dissolution by MnO₂, wherein an increase in dissolution extent was also observed. We further documented that Ag₂S-NP dissolution by MnO₂ was highly dependent on O₂ and it was an oxidative dissolution, with the production of SO₄²⁻. Finally, dissolution of Ag₂S-NP by MnO₂ affected zebra fish (Danio rerio) embryo viability, showing significant reduction in embryo survival and hatching rates, compared to embryos exposed to Ag₂S-NP, MnO₂ or dissolved manganese alone. These findings would further shed light on the stability of Ag₂S-NP in the natural environment - essential for comprehensive nano risk assessment.
Afficher plus [+] Moins [-]