Affiner votre recherche
Résultats 341-350 de 7,200
Green synthesis of metal-based nanoparticles for sustainable agriculture Texte intégral
2022
Jiang, Yaqi | Zhou, Pingfan | Zhang, Peng | Adeel, Muhammad | Shakoor, Noman | Li, Yuanbo | Li, Mingshu | Guo, Manlin | Zhao, Weichen | Lou, Benzhen | Wang, Lingqing | Lynch, Iseult | Rui, Yukui
The large-scale use of conventional pesticides and fertilizers has put tremendous pressure on agriculture and the environment. In recent years, nanoparticles (NPs) have become the focus of many fields due to their cost-effectiveness, environmental friendliness and high performance, especially in sustainable agriculture. Traditional NPs manufacturing methods are energy-intensive and harmful to environment. In contrast, synthesizing metal-based NPs using plants is similar to chemical synthesis, except the biological extracts replace the chemical reducing agent. This not only greatly reduces the used of traditional chemicals, but also produces NPs that are more economical, efficient, less toxic, and less polluting. Therefore, green synthesized metal nanoparticles (GS-MNPs) are widely used in agriculture to improve yields and quality. This review provides a comprehensive and detailed discussion of GS-MNPs for agriculture, highlights the importance of green synthesis, compares the performance of conventional NPs with GS-MNPs, and highlights the advantages of GS-MNPs in agriculture. The wide applications of these GS-MNPs in agriculture, including plant growth promotion, plant disease control, and heavy metal stress mitigation under various exposure pathways, are summarized. Finally, the shortcomings and prospects of GS-MNPs in agricultural applications are highlighted to provide guidance to nanotechnology for sustainable agriculture.
Afficher plus [+] Moins [-]Glycine ameliorates MBP-induced meiotic abnormalities and apoptosis by regulating mitochondrial-endoplasmic reticulum interactions in porcine oocytes Texte intégral
2022
Gao, Lepeng | Zhang, Chang | Yu, Sicong | Liu, Shuang | Wang, Guoxia | Lan, Hainan | Zheng, Xin | Li, Suo
Monobutyl phthalate (MBP) is the main metabolite of dibutyl phthalate (DBP) in vivo. MBP has a stable structure, can continuously accumulate in living organisms, and has the potentially to harm animal and human reproductive function. In the ovarian follicle microenvironment, MBP may lead to defects in follicular development and steroid production, abnormal meiotic maturation, impaired ovarian function and other reproductive deficits. In this study, SMART-seq was used to investigate the effects of MBP exposure on the in vitro maturation (IVM) and development of porcine oocytes. The results showed that differentially expressed genes after MBP exposure were enriched in the biological processes cytoskeleton, cell apoptosis, endoplasmic reticulum (ER) and mitochondria. Glycine (Gly) improved the developmental potential of porcine oocytes by regulating mitochondrial and ER function. The effect of Gly in protecting oocytes against MBP-induced damage was studied. The results showed that the addition of Gly significantly decreased the rate of MBP-induced spindle abnormalities, decreased the frequency of MBP-induced mitochondria-associated ER membrane (MAM) interactions, and downregulated the protein and gene expression of the linkage molecules Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) in the MAM. Additionally, treatment with Gly restored the distribution of the 1,4,5-triphosphate receptor 1 (IP₃R1) and voltage-dependent anion channel 1 (VDAC1), further decreasing the intracellular free calcium concentration ([Ca²⁺]ᵢ) levels and mitochondrial Ca²⁺ ([Ca²⁺]ₘ) , increasing the ER Ca²⁺ ([Ca²⁺]ER) levels, and thus significantly increasing the ER levels and mitochondrial membrane potential (ΔΨ m). Gly also decreased the levels of reactive oxygen species (ROS) and increased the levels of Glutathione (GSH), oocyte apoptosis-related indicators (Caspase-3 activity and Annexin V) and oocyte apoptosis-related genes (BAX, Caspase 3 and AIFM1). Our results suggest that Gly can ameliorate microtubule cytoskeleton abnormalities and improve oocyte maturation by reducing the defective mitochondrial–ER interactions caused by MBP exposure in vitro.
Afficher plus [+] Moins [-]Polychlorinated biphenyls (PCBs) in soils from typical paddy fields of China: Occurrence, influencing factors and human health risks Texte intégral
2022
Niu, Lili | Mao, Shuduan | Zhou, Jinyi | Zhao, Lu | Zhu, Yuanqiao | Xu, Chao | Sun, Xiaohui | Sun, Jianqiang | Liu, Weiping
The contamination of paddy soils is of great concern since it links to human health via food supply. Limited knowledge is available on PCB residue characteristics and the associated health risks in paddy soils under various environmental conditions. In this study, a soil sampling campaign was conducted in three typical paddy fields, i.e., Sanjiang Plain (SP), Taihu Plain (TP) and Hani Terrace (HT), crossing a transect of 4000 km in China. The concentrations of 29 quantified PCBs varied from 58.6 to 1930 pg/g in paddy soils, with samples at TP showing the highest burden. Tri-CBs were the major homologue group at SP and HT, whereas hexa-CBs at TP. Altitude, temperature, soil organic matter content and soil conductivity well explained the variations in PCB concentrations among sites. The homologue profiles of soil PCBs followed the fractionation theory. In addition, soil conductivity was found to be negatively correlated to low-chlorinated PCBs and positively to high-chlorinated congeners. Furthermore, the toxicities of soil PCBs and the exposure risks through rice intake were estimated. Higher toxicity equivalent quantities and hazard indexes were found at SP than TP and HT, with over one third of the samples displaying health risks. The results of this work highlight the necessity to better understand the occurrence characteristics and the associated health risks of PCBs in soils of rice-growing regions.
Afficher plus [+] Moins [-]Diversity and distribution of antibiotic resistance genes associated with road sediments transported in urban stormwater runoff Texte intégral
2022
Zuo, XiaoJun | Suo, PengCheng | Li, Yang | Xu, Qiangqiang
Recently, increasing attention has been paid to antibiotic resistance genes (ARGs) in urban stormwater runoff. However, there were little data on the diversity and distribution of ARGs associated with road sediments transported in runoff. The investigation of ARGs diversity showed that sulfonamide resistance genes (sul2 and sul3) occupied 61.7%–82.3% of total ARGs in runoff. The analysis of ARGs distribution in particulate matter (PM) implied that both tetQ and trbC existed mainly in PM with size of 150–300 μm, but other ARGs and mobile genetic elements (MGEs) were dominant in PM with size <75 μm. The discussion of potential hosts indicated that target genes (ermF, blaOXA1/blaOXA30, ermC, qnrA, sul2, tnpA-01, intI2, tetW, intI1, sul3, trbC) had the strongest subordinate relationship with Proteobacteria at phylum level and Enterobacter at genus level. The effect evaluation of ARGs distribution suggested that 13 kinds of ARGs were positively correlated with Pr/PS and Zeta potential, resulting in the more ARGs in PM with smaller size (<75 μm).
Afficher plus [+] Moins [-]Occurrence and translocation of ustiloxins in rice false smut-occurred paddy fields, Hubei, China Texte intégral
2022
Sun, Qian | Qian, Zhisong | Liu, Hao | Zhang, Yongkang | Yi, Xun'e | Kong, Ren | Cheng, Shiyang | Man, Jianguo | Zheng, Lu | Huang, Junbin | Su, Guanyong | Letcher, Robert J. | Giesy, John P. | Liu, Chunsheng
Ustiloxin A (UA) and ustiloxin B (UB), two major mycotoxins produced by the pathogen of rice false smut (RFS) during rice cultivation, have attracted increasing attentions due to their potential health risks. However, limited data are available about their occurrence and fate in paddy fields and contamination profiles in rice. In this study, a field study was performed to investigate the occurrence and translocation of UA and UB in RFS-occurred paddies. For the first time to our knowledge, we reported a ubiquitous occurrence of the two ustiloxins in the paddy water (range: 0.01–3.46 μg/L for UA and <0.02–1.15 μg/L for UB) and brown rice (range: 0.09–154.08 μg/kg for UA and <0.09–23.57 μg/kg for UB). A significant positive correlation was observed between ustiloxin levels in paddy water and brown rice (rₛ = 0.48–0.79, p < 0.01). The occurrence of ustiloxin uptake in water-rice system was also evidenced by the rice exposure experiment, suggesting paddy water might be an important source for ustiloxin accumulation in rice. These results suggested that the contamination of ustiloxins in rice might occur widely, which was supported by the significantly high detection frequencies of UA (96.6%) and UB (62.4%) in polished rice (149 samples) from Hubei Province, China. The total concentrations of ustiloxins in the polished rice samples collected from Hubei Province ranged from <20.7 ng/kg (LOD) to 55.1 μg/kg (dry weight). Further studies are needed to evaluate the potential risks of ustiloxin exposure in the environment and humans.
Afficher plus [+] Moins [-]Chlorophyll a variations and responses to environmental stressors along hydrological connectivity gradients: Insights from a large floodplain lake Texte intégral
2022
Li, Bing | Yang, Guishan | Wan, Rongrong | Xu, Ligang
Understanding the key drivers of eutrophication in floodplain lakes has long been a challenge. In this study, the Chlorophyll a (Chla) variations and associated relationships with environmental stressors along the temporal hydrological connectivity gradient were investigated using a 11-year dataset in a large floodplain lake (Poyang Lake). A geostatistical method was firstly used to calculate the hydrological connectivity curves for each sampling campaign that was further classified by K-means technique. Linear mixed effect (LME) models were developed through the inclusion of the site as a random effect to identify the limiting factors of Chla variations. The results identified three clear hydrological connectivity variation patterns with remarkable connecting water area changes in Poyang Lake. Furthermore, hydrological connectivity changes exerted a great influence on environmental variables in Poyang Lake, with a decrease in nutrient concentrations as the hydrological connectivity enhanced. The Chla exhibited contrast variations with nutrient variables along the temporal hydrological connectivity gradient and generally depended on WT, DO, EC and TP, for the entire study period. Nevertheless, the relative roles of nutrient and non-nutrient variables in phytoplankton growth varied with different degrees of hydrological connectivity as confirmed by the LME models. In the low hydrological connectivity phase, the Chla dynamics were controlled only by water temperature with sufficient nutrients available. In the high hydrological connectivity phase, the synergistic influences of both nutrient and physical variables jointly limited the Chla dynamics. In addition, a significant increasing trend was observed for Chla variations from 2008 to 2018 in the HHC phase, which could largely be attributed to the elevated nutrient concentrations. This study confirmed the strong influences of hydrological connectivity on the nutrient and non-nutrient limitation of phytoplankton growth in floodplain lakes. The present study could provide new insights on the driving mechanisms underlying phytoplankton growth in floodplain lakes.
Afficher plus [+] Moins [-]Bioremediation of a saline-alkali soil polluted with Zn using ryegrass associated with Fusariumincarnatum Texte intégral
2022
Zhang, Jinxuan | Fan, Xiaodan | Wang, Xueqi | Tang, Yinbing | Zhang, Hao | Yuan, Zhengtong | Zhou, Jiaying | Han, Yibo | Li, Teng
Biotechnological strategies have become effective in the remediation of polluted soils as they are cost-effective and do not present a risk of secondary pollution. However, using a single bioremediation technique (microorganism or plant) is not suitable for achieving a high remediation rate of polluted saline-alkali soils with heavy metals. Therefore, the present study aims to assess the effects and mechanisms of combined ryegrass and Fusarium incarnatum on the zinc (Zn)-polluted saline-alkali soil over 45 days. According to the obtained results, the combined Fusarium incarnatum-ryegrass showed the highest remediation rate of 49.35% after 45 days, resulting in a significantly lower soil Zn concentration than that observed in the control group. In addition, the inoculation of Fusarium incarnatum showed a positive effect on the soil EPS secretion. The soil protein contents ranged from 0.035 to 0.055 mg/kg, while the soil polysaccharide contents increased from 0.25 to 0.61 mg/g. The soil microbial flora and ryegrass showed resistance to saline and alkaline stresses through the secretion of extracellular polysaccharides. The three-dimensional fluorescence spectrum (3D-EEM) confirmed that EPS in the soil was mainly a fulvic acid-like substance. The fluorescein diacetate (FDA) hydrolase activity in the saline-alkali soil was first increased due to the effect of Fusarium incarnatum and then decreased to a minimum value of 96 μg/(g·h). In addition, the Fusarium incarnatum inoculation improved the diversity and richness of soil fungi. Although the Fusarium incarnatum inoculation had a slight effect on the germination of ryegrass, it increased the biomass and enrichment coefficient. The results revealed a translocation factor (TF) value of 0.316 at 45 days after ryegrass sowing, showing significant enrichment of the soil Zn heavy metal zinc in the ryegrass roots.
Afficher plus [+] Moins [-]Long-term exposure to nano-TiO2 interferes with microbial metabolism and electron behavior to influence wastewater nitrogen removal and associated N2O emission Texte intégral
2022
Ye, Jinyu | Gao, Huan | Wu, Junkang | Yang, Guangping | Duan, Lijie | Yu, Ran
The extensive use of nano-TiO₂ has caused concerns regarding their potential environmental risks. However, the stress responses and self-recovery potential of nitrogen removal and greenhouse gas N₂O emissions after long-term nano-TiO₂ exposure have seldom been addressed yet. This study explored the long-term effects of nano-TiO₂ on biological nitrogen transformations in a sequencing batch reactor at four levels (1, 10, 25, and 50 mg/L), and the reactor's self-recovery potential was assessed. The results showed that nano-TiO₂ exhibited a dose-dependent inhibitory effect on the removal efficiencies of ammonia nitrogen and total nitrogen, whereas N₂O emissions unexpectedly increased. The promoted N₂O emissions were probably due to the inhibition of denitrification processes, including the reduction of the denitrifying-related N₂O reductase activity and the abundance of the denitrifying bacteria Flavobacterium. The inhibition of carbon source metabolism, the inefficient electron transfer efficiency, and the electronic competition between the denitrifying enzymes would be in charge of the deterioration of denitrification performance. After the withdrawal of nano-TiO₂ from the influent, the nitrogen transformation efficiencies and the N₂O emissions of activated sludge recovered entirely within 30 days, possibly attributed to the insensitive bacteria survival and the microbial community diversity. Overall, this study will promote the current understanding of the stress responses and the self-recovery potential of BNR systems to nanoparticle exposure.
Afficher plus [+] Moins [-]Multigenerational exposure of the collembolan Folsomia candida to soil metals: Adaption to metal stress in soils polluted over the long term Texte intégral
2022
Zhang, Yabing | Li, Zhu | Ke, Xin | Wu, Longhua | Christie, Peter
Multigenerational tests provide a comprehensive assessment of the long-term toxicity of pollutants. Here, the multigenerational effects of soil metal contamination on Folsomia candida were investigated over five generations (generations 1–5: F1–F5). Nine soils with varying physicochemical properties and degrees of metal pollution were studied. The selected endpoints were survival, reproduction, body size and body metal concentrations. F. candida was cultured only up to the fifth generation with high reproduction in contaminated acid soils where reproduction was at least 5 times that in neutral soils and 20 times that in calcareous soils. Correlation analysis indicated that soil pH (68.9% contribution) and cation exchange capacity (CEC, 15.4% contribution) were more important factors than pollution level affecting the reproduction of F. candida. No significant difference was observed in adult survival or adult length over five generations. The highest collembolan body Cd concentrations in soils A1-A3 were 3.15, 2.93 and 3.23 times those in F1, with similar results for body Pb. A similar trend in reproduction and juvenile length was observed with an initial decrease (p < 0.05) and then an increase (p < 0.05) over the generations in each acid soil; the opposite trend occurred in the changes in body cadmium (Cd) and lead (Pb) concentrations which increased initially (p < 0.05) and then decreased (p < 0.05) compared to the original concentrations of the first generation. The results indicate that F. candida can adapt to soil metal stress during multigenerational exposure and the adaption energy may be related to a tradeoff between reproduction or growth of juveniles and the detoxification of metals accumulated in the body. Soil properties, especially pH and CEC, had a substantial influence on the long-term survival of the collembolan in the metal-polluted soils.
Afficher plus [+] Moins [-]Decrease in life expectancy due to COVID-19 disease not offset by reduced environmental impacts associated with lockdowns in Italy Texte intégral
2022
Rugani, Benedetto | Conticini, Edoardo | Frediani, Bruno | Caro, Dario
The consequence of the lockdowns implemented to address the COVID-19 pandemic on human health damage due to air pollution and other environmental issues must be better understood. This paper analyses the effect of reducing energy demand on the evolution of environmental impacts during the occurrence of 2020-lockdown periods in Italy, with a specific focus on life expectancy. An energy metabolism analysis is conducted based on the life cycle assessment (LCA) of all monthly energy consumptions, by sector, category and province area in Italy between January 2015 to December 2020. Results show a general decrease (by ∼5% on average) of the LCA midpoint impact categories (global warming, stratospheric ozone depletion, fine particulate matter formation, etc.) over the entire year 2020 when compared to past years. These avoided impacts, mainly due to reductions in fossil energy consumptions, are meaningful during the first lockdown phase between March and May 2020 (by ∼21% on average). Regarding the LCA endpoint damage on human health, ∼66 Disability Adjusted Life Years (DALYs) per 100,000 inhabitants are estimated to be saved. The analysis shows that the magnitude of the officially recorded casualties is substantially larger than the estimated gains in human lives due to the environmental impact reductions. Future research could therefore investigate the complex cause-effect relationships between the deaths occurred in 2020 imputed to COVID-19 disease and co-factors other than the SARS-CoV-2 virus.
Afficher plus [+] Moins [-]