Affiner votre recherche
Résultats 351-360 de 502
Implementation of the AquaCrop Model for Forecasting the Effects of Climate Change on Water Consumption and Potato Yield Under Various Irrigation Techniques
2024
E. E. Salman, A. M. Akol, J. S. Abdel Hamza and Ahmed Samir Naje
In this study, the AquaCrop model was employed to analyze the impact of projected future climate changes on the water usage and biomass production of potato crops in Babylon, Iraq, under varying irrigation methods. The irrigation techniques evaluated included sprinkler irrigation, surface drip irrigation, and subsurface drip irrigation at depths of 10 cm and 20 cm. The study involved simulating and forecasting conditions for the year 2050, comparing them to current conditions. The model measured and predicted the evapotranspiration (ETa) and actual biomass of potato crops for 2050 using the RCP 8.5 scenarios, which outline different trajectories for greenhouse gas emissions. The AquaCrop model was calibrated and validated using statistical measures such as the R2, RMSE, CV, EF, and D, achieving a 99% accuracy level in its performance. The findings suggest that using drip irrigation systems and applying the AquaCrop model significantly mitigates the adverse effects of environmental stress on desert soils and enhances sustainable agricultural practices in arid regions.
Afficher plus [+] Moins [-]Presence of Heavy Metals in Purple Crab (Platyxanthus orbignyi) Tissues in Southern Peru
2024
José L. Ramos-Tejeda, José A. Valeriano-Zapana and Nilton B. Rojas-Briceño
Heavy metals (iron, copper, and zinc) were quantified in purple crab (Platyxanthus orbignyi) tissues collected in winter (September 2021), spring (November 2021), and summer (March 2022) at three beaches (Tres Hermanas, Fundición, and El Diablo) in Ilo Harbour (Moquegua), South Peru. The rank order of heavy metal concentrations in purple crab tissues and sediments was similar; iron (Fe) was followed by Copper (Cu), and this last one was followed by Zinc (Zn). The heavy metal concentrations in tissue crabs from the three beaches differed from each other spatially and seasonally. In addition, Fundición Beach was the zone with the highest concentration of those three metals during the summer.
Afficher plus [+] Moins [-]Optimization of Aviation Biofuel Development as Sustainable Energy Through Simulation of System Dynamics Modeling
2024
Didi Nuryadin, Mohammad Nurcholis, Gita Astyka Rahmanda and Indra Wahyu Pratama
This study aims to optimize the development of aviation biofuel as a sustainable energy source by simulating system dynamics modeling. This study is based on the System Dynamics modeling approach, which is a set of conceptual tools designed to understand the structure and dynamics of complex systems. This study used the system dynamics method specifically designed to analyze complex systems. It has been applied to various sustainability-related issues, including urban area sustainable development modeling, sustainability of water resources, environmental management, and sustainable urbanization. The result obtained using the quantitative modeling showed that the contribution of aviation biofuel to flight intensity in Indonesia is still insignificant. The practical implications of this study are that palm oil has the potential to be a viable raw material for aviation biofuel production in Indonesia, and implementing policies to mitigate negative consequences and optimize land use for aviation biofuel fuel production can contribute to sustainable urban development. The originality of this study lies in its use of System Dynamics modeling to analyze the potential of palm oil as a raw material for aviation biofuel production and identify the various social, economic, environmental, and technological factors that impact it.
Afficher plus [+] Moins [-]Role of Biotechnology and Genetic Engineering in Bioremediation of Cadmium Pollution
2024
A. Kumar, G. Mukherjee and S. Gupta
Cadmium (Cd) is ubiquitous and an unessential trace element existing in the environment. Anthropogenic activities and applications of synthetic phosphate fertilizers greatly enhance the concentration of Cadmium in the environment, which proves to be carcinogenic. The long-term effects of heavy metals contamination on plants and animals have recently become a major public health concern. Thanks to the application of science and technology, new environmental initiatives can have a lower environmental impact significantly. The role of microbes is very well known and must be considered as potential pollutant removers. Microbial flora can remove heavy metals and oil from contaminated soil and water. In comparison to conventional techniques, bioremediation itself proved to be a more potent technique because the established mechanisms render it ineffective. Biotechnological advancements are inherently harmful to the environment because they have the potential to reduce metal pollution. Pollutants in the environment can be effectively removed using bioremediation. Both native and introduced species can thrive in a microorganism-friendly environment.
Afficher plus [+] Moins [-]Total Soluble Protein Mediated Morphological Traits in Mustard Treated with Thiourea and Salicylic Acid
2024
Shipa Rani Dey, Prasann Kumar and Joginder Singh
The total soluble protein-mediated morphological traits in mustard treated with Thiourea and Salicylic acid were investigated. In addition, it tested the hypothesis that the growth regulator salicylic acid protects the photosynthetic apparatus by up-regulating morphological traits. Under natural environmental conditions, seeds were sown in the field, and seed emergence was recorded. For three days after the 15-day stage, plants in the area were treated with thiourea and salicylic acid and allowed to grow for 90 days. Plants were harvested to assess various morphological traits. A follow-up application of SA and Thiourea plants improved plant height, leaf area, internodal length, leaf number, and accelerated plant activity. The up-regulation of morphological traits may have occurred in SA and Thiourea-mediated plants. After treatments, the level of total soluble protein was estimated in the leaves at proposed day intervals.
Afficher plus [+] Moins [-]Evaluation of an Electrocoagulation Process Modified by Fenton Reagent
2024
M. A. López-Ramírez, O. P. Castellanos-Onorio, F. Lango-Reynoso, M. del R. Castañeda-Chávez, J. Montoya-Mendoza, M. Díaz-González and B. Ortiz-Muñiz
This article is oriented to the degradation of nickel in an ionic state at laboratory level from synthetic water made with nickel sulfate, using the electrocoagulation process with aluminum cathodes and modifying this process by the addition of the Fenton reagent, which results from the combination of hydrogen peroxide (H2O2) and ferrous sulfate (FeSO4) being this reagent a catalyst and oxo-coagulant agent, The efficiency of this reagent will be compared with the typical treatment with aluminum sulfate, which is a typical process based on ion exchange/coagulation at the same percentage concentrations as the Fenton reagent. For this purpose, the optimum conditions of the advanced electrocoagulation process were determined, which consisted of determining the concentrations of Fenton’s reagent at concentrations of 150 ppm, 300 ppm, and 450 ppm, in addition to the operating variables such as pH of 8 and 10, voltage of 17.5 V and 19 V and their reaction time, which were compared with aluminum sulfate at 300 ppm, 600 ppm, and 900 ppm. The results obtained with respect to the typical treatment were 0% nickel degradation. However, with the advanced oxidation treatment, an average reduction of 97.5% was found at the conditions of 19 V, pH 10, and Fenton 150 ppm in a time of 30 min.
Afficher plus [+] Moins [-]Assessment of Deposited Red Clay Soil in Kirkuk City Using Remote Sensing Data and GIS Techniques
2024
V. F. Salahalden, M. A. Shareef and Q. A. M. Al Nuaimy
This study investigates the physical characteristics of red clay using the IDW approach and linear regression modeling in an area of 268.12 km2, focusing on Kirkuk, Bor, and Jambor structures. Through the analysis of 52 soil samples and the integration of laboratory data with IDW and regression results, several significant findings have emerged. The IDW method combined with linear regression proves to be a cost-effective and efficient approach for obtaining soil property data and generating accurate digital maps of red clay’s physical features. The Silt concentration exhibits a wide range, while the gravel content remains relatively low, indicating the predominance of silt in the soil composition. Analysis of Atterberg limits reveals the soil’s behavior and consistency in response to moisture, with the plasticity index generally falling within the low to medium range due to the considerable silt content in most soil samples. The linear regression model highlights positive correlations between the liquid limit, plastic limit, and plasticity index. Moderately positive relationships exist between the liquid limit and clay content, as well as a weak positive association between the liquid limit and specific gravity. Dry density, on the other hand, shows no significant correlation with other physical variables, suggesting its independence from the measured parameters. The plastic limit demonstrates a stronger relationship with the clay content compared to the liquid limit. Additionally, weak positive correlations are found between the liquid limit, plastic limit, and specific gravity and water content, indicating the influence of moisture on these parameters. Furthermore, gravel exhibits a moderate positive correlation with sand and silt concentrations, while a strong positive correlation is observed between sand and silt contents, underscoring their close association with the soil composition.
Afficher plus [+] Moins [-]Experimental Analysis of Anaerobic Co-digestion: Potential of Fruit Wastes
2024
S. Sathish, A. Saravanan, R. Suresh, K. Saranya, R. Sarweswaran, G. Balaji and S. Seralathan
This study focuses on converting fruit waste into usable clean energy by an innovative, cost-effective anaerobic biodigester. The biodigester is designed to anaerobically digest various fruit wastes and starter inoculums of cow dung that are locally obtained. A batch vertical digester of 1000 liters capacity built of fiber with a phonematic agitator positioned in the center is used to improve mixing. The retention time is 30 days with a substrate of banana peels co-digested with mango and papaya peels individually in the ratio of 50:50. The combined wastes generated the biogas and the total quantity of biogas generated for all combined wastes over 21 days varies between 530L/day and 480L/day respectively. In this work, banana and mango peel (waste/water) split 50:50 gives a peak yield of 530L/day. The average ambient temperatures are kept in the range of 25°C to 35°C (i.e., mesophilic range). The pH range of 6.4 to 7.8 is consistently maintained and seems to be stable. Therefore, this proposed anaerobic digester would reduce the disposal of solid waste, and it is cost-effective. After cleaning, it is observed that the combined peels of bananas and papaya contained 91.95% of the estimated biogas and methane, which can be used to solve energy issues such as electricity production and cooking purposes.
Afficher plus [+] Moins [-]An Overview of Solid Waste Management Practices in Pune, Maharashtra, India
2024
Nilofar Saifi and Bandana Jha
The growing population and rapid urbanization are significant challenges for Indian cities. Pune City generates nearly 2,258 tonnes of waste per day. Pune’s informal waste sector has demonstrated remarkable efficiency, cost-effectiveness, and self-sustainability. Moreover, it contributes to favorable economic and social outcomes for the city. With the support of the self-help group SWaCH Seva Sahakari Sanstha Maryadit, Pune, the municipal solid waste management model has successfully achieved a remarkable 95 percent segregation rate. Implementing the Pune municipal solid waste management model showcases the active and efficient engagement of informal waste workers in the collection and resource utilization process. This underscores the possibility of favorable economic, social, and environmental results stemming from collaborations between municipalities and waste pickers. This paper looks at the role of SWaCH in line with Pune Municipal Corporation towards the present waste management system. Primarily reliant on labor, this model accomplishes recycling tasks at a notably lower cost compared to conventional mechanized and centralized waste management approaches. It can also accomplish high recycling levels and relatively considerable plastic waste segregation. Promoting the retrieval of valuable materials, especially plastics, for local and global recycling enterprises actively contributes to the advancement of a circular urban waste management approach. The objective of this research is to explore and provide a realistic understanding of Pune’s current status of waste generation, collection, transportation, and disposal. Apart from the SwaCH-PMC model, the paper also focuses on plastic waste recycling, the Red Dot Campaign towards sanitary waste, and household e-waste management in Pune.
Afficher plus [+] Moins [-]Coal Mining and MSME: Is it Mutually Beneficial?
2024
S. Bintariningtyas, T. Mulyaningsih and Y. Purwaningsih
The existence of a coal mining company in the vicinity of the community is something to be feared related to environmental damage due to coal mining. On the other hand, coal mining can have a positive impact on the economy of communities around the mine through corporate social responsibility programs. The problem in this research is that MSMEs need help to improve their performance. Therefore, this research aims to examine how the role of mining companies through corporate social responsibility (CSR) programs can contribute to the development of MSMEs in communities around mining areas. The company provides promotional assistance, funding, and capacity building. This research conducted surveys and interviews with respondents, namely MSMEs, around mining locations. The findings show that corporate social responsibility programs in coal mining companies have a positive impact on empowering MSMEs in communities around the mine. By providing training and promotion facilities to MSMEs, mining companies can also improve MSME performance compared to providing access to financial assistance programs. The company not only takes advantage of mining and focuses on its environmental impact but also the company’s role in empowering MSMEs.
Afficher plus [+] Moins [-]